Esempio n. 1
0
def scatter():
    scatter = vincent.Scatter(data.multi_iter2,
                              width=WIDTH,
                              height=HEIGHT,
                              iter_idx='index')
    scatter.axis_titles(x='Index', y='Data Value')
    scatter.legend(title='Categories')
    return scatter.to_json()
Esempio n. 2
0
    def test_datetimeandserial(self):
        '''Test pandas serialization and datetime parsing'''
        rng = pd.date_range('1/1/2013', periods=30, freq='D')
        ts = pd.Series(np.random.randn(len(rng)), index=rng)

        scatter = vincent.Scatter()
        scatter.tabular_data(ts)
        timevalue = time.mktime(ts.index[0].timetuple()) * 1000
        assert scatter.data[0]['values'][0]['x'] == timevalue
Esempio n. 3
0
    def add_air_station_marker_with_graph(self, data, *args, **kwargs):
        """Esta función se encarga de agregar graficos al los marcadores existentes"""
        locations = data.iloc[:, [1, 2]]
        station_names = data.iloc[:, [3]]

        station_ids = list(pd.unique(data.id))
        station_groups = data.groupby('id')

        for station_id in station_ids:
            filtered_data = station_groups.get_group(station_id)
            print('***** data get group')
            print(type(filtered_data))
            print(filtered_data.head())
            plot_data = filtered_data.groupby(
                ['magnitude', 'year', 'month', 'day']).agg({
                    'value': 'mean'
                }).reset_index()
            print('***** data plot data')
            print(type(plot_data))
            print(plot_data.head())

            x = [int(hour) for hour in list(plot_data['day'])]
            y = [int(value) for value in list(plot_data['value'])]
            print(x)
            print(y)

            xy_values = {
                'x': x,
                'y': y,
            }
            scatter_chart = vincent.Scatter(xy_values,
                                            iter_idx='x',
                                            width=600,
                                            height=300)

            scatter_chart.axis_titles(x='Día',
                                      y='Promedio Dióxido de Nitrogeno día')

            popup_scatter_plot = folium.Popup(max_width=900).add_child(
                folium.Vega(scatter_chart, height=350, width=700))

            air_quality_station = [
                filtered_data.iloc[0, 1], filtered_data.iloc[0, 2]
            ]
            print(air_quality_station)
            station_name = [filtered_data.iloc[0, 3]]
            print(station_name)
            folium.Marker(
                location=air_quality_station,
                tooltip=folium.Tooltip(
                    f'Estación: {station_name[0]}<br>Latitud: {round(air_quality_station[0], 4)}<br>Longitud: {round(air_quality_station[1], 4)}'
                ),
                popup=popup_scatter_plot,
                icon=folium.CustomIcon(icon_image='icons/forecast.png',
                                       icon_size=(40, 40))).add_to(self._map)
Esempio n. 4
0
    def draw_markers(self, data, coordinates, style, label, mplobj=None):
        import vincent  # only import if VincentRenderer is used
        if coordinates != 'data':
            warnings.warn("Only data coordinates supported. Skipping this")
        markerdata = {'x': data[:, 0],
                      'y': data[:, 1]}
        markers = vincent.Scatter(markerdata, iter_idx='x',
                                  width=self.figwidth, height=self.figheight)

        # TODO: respect the other style settings
        markers.scales['color'].range = [style['facecolor']]

        if self.chart is None:
            self.chart = markers
        else:
            warnings.warn("Multiple plot elements not yet supported")
Esempio n. 5
0
def plotrwresult(G):
    visits = [G.node[node]['visits'] for node in G.nodes_iter()]
    norm_visits = np.array(visits) / float(G.graph['total_visits'])

    deaths = [G.node[node]['deaths'] for node in G.nodes_iter()]
    norm_deaths = np.array(deaths) / float(sum(deaths))

    if G.is_directed():
        degrees = [G.in_degree(node) for node in G.nodes_iter()]
        norm_degrees = np.array(degrees) / float(G.size())
    else:
        degrees = [G.degree(node) for node in G.nodes_iter()]
        aorm_degrees = np.array(degrees) / float(2 * G.size())

    multi_iter1 = {
        'index': range(G.order()),
        'Visits': norm_visits,
        'Deaths': norm_deaths,
        'Degree': norm_degrees
    }
    line = vincent.Scatter(multi_iter1, iter_idx='index')
    line.axis_titles(x='Vertex', y='Juice')
    line.legend(title='Results')
    line.width = 400
    line.height = 300

    line.marks[0].marks[0].properties.enter.opacity = vincent.ValueRef(value=1)

    line.marks[0].marks[0].properties.update = vincent.PropertySet()
    line.marks[0].marks[0].properties.update.size = vincent.ValueRef(value=100)
    line.marks[0].marks[0].properties.hover = vincent.PropertySet()
    line.marks[0].marks[0].properties.hover.size = vincent.ValueRef(value=200)
    line.marks[0].marks[0].properties.update.size = vincent.ValueRef(value=100)
    line.marks[0].marks[0].properties.hover = vincent.PropertySet()
    line.marks[0].marks[0].properties.hover.size = vincent.ValueRef(value=200)
    line.scales['shape'] = vincent.Scale(
        name='shape',
        type='ordinal',
        domain=vincent.DataRef(data='table', field='data.col'),
        range=["square", "circle", "triangle-down", "triangle-up"])
    line.marks[0].marks[0].properties.enter.shape = vincent.ValueRef(
        scale="shape", field="data.col")
    line.legends[0].shape = "shape"

    return line
Esempio n. 6
0
    def test_datetimeandserial(self):
        '''Test pandas serialization and datetime parsing'''

        import pandas.io.data as web
        all_data = {}
        for ticker in ['AAPL', 'GOOG']:
            all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2004',
                                                  '1/1/2006')
        price = pd.DataFrame(
            {tic: data['Adj Close']
             for tic, data in all_data.iteritems()})

        scatter = vincent.Scatter()
        scatter.tabular_data(price, columns=['AAPL', 'GOOG'])
        assert scatter.data[0]['values'][0]['x'] == 10.49
        nt.assert_is_none(scatter.data[0]['values'][0]['y'])

        line = vincent.Line()
        line.tabular_data(price, columns=['AAPL'])
        assert line.data[0]['values'][0]['x'] == 1073030400000
Esempio n. 7
0
line = vincent.Line(multi_iter1, iter_idx='index')
line.axis_titles(x='Index', y='Value')
line.legend(title='Categories')
line.display()

# <codecell>

line = vincent.Line(price[['GOOG', 'AAPL']])
line.axis_titles(x='Date', y='Price')
line.legend(title='GOOG vs AAPL')
line.display()

# <codecell>

scatter = vincent.Scatter(df_1)
scatter.axis_titles(x='Index', y='Data Value')
scatter.legend(title='Categories')
scatter.colors(brew='Set3')
scatter.display()

# <codecell>

stacked = vincent.StackedArea(df_1)
stacked.axis_titles(x='Index', y='Value')
stacked.legend(title='Categories')
stacked.colors(brew='Spectral')
stacked.display()

# <codecell>
Esempio n. 8
0
# -*- coding: utf-8 -*-
'''
Builds a Vega grammar specification from vincent.Scatter()
'''

import vincent
import random

vis = vincent.Scatter()
vis.tabular_data([random.randint(10, 100) for x in range(0, 201, 1)])

#Generate both the Vega JSON and a data JSON.
path = r'/vega.json'
vis.to_json(path, split_data=True, html=True)

#Make the visualization wider, and add a hover to the points

vis.update_vis(width=800)

vis + ({
    'fill': {
        'value': '#2a3140'
    },
    'size': {
        'value': '100'
    }
}, 'marks', 0, 'properties', 'update')

vis + ({
    'fill': {
        'value': '#a63737'
Esempio n. 9
0
m.save(os.path.join('recursos', 'dibujar.html'))

#######################################
import json
import numpy as np
import vincent

N = 100

multi_iter2 = {
    'x': [4, 5, 6],
    'y': [1, 2, 3],
}

scatter = vincent.Scatter(multi_iter2, iter_idx='x', height=100, width=200)
data = json.loads(scatter.to_json())

m = folium.Map([-34.969672, -71.230373], zoom_start=12)
mk = features.Marker([-34.969672, -71.230373])
p = folium.Popup('Hello')
v = features.Vega(data, width='100%', height='100%')

mk.add_child(p)
p.add_child(v)
m.add_child(mk)

m.save(os.path.join('recursos', 'mapaGrafico.html'))

#################################
import json
import numpy as np

import folium
from folium import Vega
import vincent

scatter_points = {
    'x': np.random.uniform(size=(100, )),
    'y': np.random.uniform(size=(100, )),
}

# Let's create the vincent chart.
scatter_chart = vincent.Scatter(scatter_points,
                                iter_idx='x',
                                width=600,
                                height=300)

# Let's convert it to JSON.
scatter_json = scatter_chart.to_json()

# Let's convert it to dict.
scatter_dict = json.loads(scatter_json)

m = folium.Map([43, -100], zoom_start=4)

popup = folium.Popup()
folium.Vega(scatter_chart, height=350, width=650).add_to(popup)
folium.Marker([30, -120], popup=popup).add_to(m)

# Let's create a Vega popup based on scatter_json.