Esempio n. 1
0
def get_train_dataset(cfg, root_dataset_path, train_dataset_name,
                      eval_binary_path):
    # We only create the train dataset if we need PCA or whitening training.
    # Otherwise not.
    if cfg.IMG_RETRIEVAL.SHOULD_TRAIN_PCA_OR_WHITENING:
        train_data_path = f"{root_dataset_path}/{train_dataset_name}"
        assert PathManager.exists(
            train_data_path), f"Unknown path: {train_data_path}"

        num_samples = 10 if cfg.IMG_RETRIEVAL.DEBUG_MODE else None

        if is_revisited_dataset(train_dataset_name):
            train_dataset = RevisitedInstanceRetrievalDataset(
                train_dataset_name, root_dataset_path)
        elif is_whiten_dataset(train_dataset_name):
            train_dataset = WhiteningTrainingImageDataset(
                train_data_path,
                cfg.IMG_RETRIEVAL.WHITEN_IMG_LIST,
                num_samples=num_samples,
            )
        else:
            train_dataset = InstanceRetrievalDataset(train_data_path,
                                                     eval_binary_path,
                                                     num_samples=num_samples)
    else:
        train_dataset = None
    return train_dataset
def get_eval_dataset(cfg, root_dataset_path, eval_dataset_name, eval_binary_path):
    eval_data_path = f"{root_dataset_path}/{eval_dataset_name}"
    assert PathManager.exists(eval_data_path), f"Unknown path: {eval_data_path}"

    num_samples = (
        None
        if cfg.IMG_RETRIEVAL.NUM_DATABASE_SAMPLES == -1
        else cfg.IMG_RETRIEVAL.NUM_DATABASE_SAMPLES
    )

    if is_revisited_dataset(eval_dataset_name):
        eval_dataset = RevisitedInstanceRetrievalDataset(
            eval_dataset_name, root_dataset_path, num_samples=num_samples
        )
    elif is_instre_dataset(eval_dataset_name):
        eval_dataset = InstreDataset(eval_data_path, num_samples=num_samples)
    elif is_copdays_dataset(eval_dataset_name):
        eval_dataset = CopyDaysDataset(
            data_path=eval_data_path,
            num_samples=num_samples,
            use_distractors=cfg.IMG_RETRIEVAL.USE_DISTRACTORS,
        )
    else:
        eval_dataset = InstanceRetrievalDataset(
            eval_data_path, eval_binary_path, num_samples=num_samples
        )
    return eval_dataset
Esempio n. 3
0
def get_eval_dataset(cfg, root_dataset_path, eval_dataset_name, eval_binary_path):
    eval_data_path = f"{root_dataset_path}/{eval_dataset_name}"
    assert PathManager.exists(eval_data_path), f"Unknown path: {eval_data_path}"

    num_samples = 20 if cfg.IMG_RETRIEVAL.DEBUG_MODE else None

    if is_revisited_dataset(eval_dataset_name):
        eval_dataset = RevisitedInstanceRetrievalDataset(
            eval_dataset_name, root_dataset_path
        )
    elif is_instre_dataset(eval_dataset_name):
        eval_dataset = InstreDataset(eval_data_path, num_samples=num_samples)
    else:
        eval_dataset = InstanceRetrievalDataset(
            eval_data_path, eval_binary_path, num_samples=num_samples
        )
    return eval_dataset
def get_train_dataset(cfg, root_dataset_path, train_dataset_name, eval_binary_path):
    # We only create the train dataset if we need PCA or whitening training.
    # Otherwise not.
    if cfg.IMG_RETRIEVAL.TRAIN_PCA_WHITENING:
        train_data_path = f"{root_dataset_path}/{train_dataset_name}"

        assert PathManager.exists(train_data_path), f"Unknown path: {train_data_path}"

        num_samples = (
            None
            if cfg.IMG_RETRIEVAL.NUM_TRAINING_SAMPLES == -1
            else cfg.IMG_RETRIEVAL.NUM_TRAINING_SAMPLES
        )

        if is_revisited_dataset(train_dataset_name):
            train_dataset = RevisitedInstanceRetrievalDataset(
                train_dataset_name, root_dataset_path, num_samples=num_samples
            )
        elif is_whiten_dataset(train_dataset_name):
            train_dataset = WhiteningTrainingImageDataset(
                train_data_path,
                cfg.IMG_RETRIEVAL.WHITEN_IMG_LIST,
                num_samples=num_samples,
            )
        elif is_copdays_dataset(train_dataset_name):
            train_dataset = CopyDaysDataset(
                data_path=train_data_path,
                num_samples=num_samples,
                use_distractors=cfg.IMG_RETRIEVAL.USE_DISTRACTORS,
            )
        elif is_oxford_paris_dataset(train_dataset_name):
            train_dataset = InstanceRetrievalDataset(
                train_data_path, eval_binary_path, num_samples=num_samples
            )
        else:
            train_dataset = GenericInstanceRetrievalDataset(
                train_data_path, num_samples=num_samples
            )
    else:
        train_dataset = None
    return train_dataset