def tstep(self): """ takes a time step in the simulation """ # check destinations if active # define motion vectors if destinations active and not everybody is at destination active_dests = len( self.population[self.population[:, 11] != 0] ) # look op this only once if active_dests > 0 and len(self.population[self.population[:, 12] == 0]) > 0: self.population = set_destination(self.population, self.destinations) self.population = check_at_destination( self.population, self.destinations, wander_factor=self.Config.wander_factor_dest, speed=self.Config.speed, ) if active_dests > 0 and len(self.population[self.population[:, 12] == 1]) > 0: # keep them at destination self.population = keep_at_destination( self.population, self.destinations, self.Config.wander_factor ) # out of bounds # define bounds arrays, excluding those who are marked as having a custom destination if len(self.population[:, 11] == 0) > 0: _xbounds = np.array( [[self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02]] * len(self.population[self.population[:, 11] == 0]) ) _ybounds = np.array( [[self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02]] * len(self.population[self.population[:, 11] == 0]) ) self.population[self.population[:, 11] == 0] = out_of_bounds( self.population[self.population[:, 11] == 0], _xbounds, _ybounds ) # set randoms if self.Config.lockdown: if len(self.pop_tracker.infectious) == 0: mx = 0 else: mx = np.max(self.pop_tracker.infectious) if len(self.population[self.population[:, 6] == 1]) >= len( self.population ) * self.Config.lockdown_percentage or mx >= ( len(self.population) * self.Config.lockdown_percentage ): # reduce speed of all members of society self.population[:, 5] = np.clip( self.population[:, 5], a_min=None, a_max=0.001 ) # set speeds of complying people to 0 self.population[:, 5][self.Config.lockdown_vector == 0] = 0 else: # update randoms self.population = update_randoms( self.population, self.Config.pop_size, self.Config.speed ) else: # update randoms self.population = update_randoms( self.population, self.Config.pop_size, self.Config.speed ) # for dead ones: set speed and heading to 0 self.population[:, 3:5][self.population[:, 6] == 3] = 0 # update positions self.population = update_positions(self.population) # find new infections self.population, self.destinations = infect( self.population, self.Config, self.frame, send_to_location=self.Config.self_isolate, location_bounds=self.Config.isolation_bounds, destinations=self.destinations, location_no=1, location_odds=self.Config.self_isolate_proportion, ) # recover and die self.population = recover_or_die(self.population, self.frame, self.Config) # send cured back to population if self isolation active # perhaps put in recover or die class # send cured back to population self.population[:, 11][self.population[:, 6] == 2] = 0 # update population statistics self.pop_tracker.update_counts(self.population) # visualise if self.Config.visualise: draw_tstep( self.Config, self.population, self.pop_tracker, self.frame, self.fig, self.spec, self.ax1, self.ax2, ) # report stuff to console sys.stdout.write("\r") sys.stdout.write( "%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \ dead: %i, of total: %i" % ( self.frame, self.pop_tracker.susceptible[-1], self.pop_tracker.infectious[-1], self.pop_tracker.recovered[-1], len(self.population[self.population[:, 10] == 1]), self.pop_tracker.fatalities[-1], self.Config.pop_size, ) ) # save popdata if required if self.Config.save_pop and (self.frame % self.Config.save_pop_freq) == 0: save_population(self.population, self.frame, self.Config.save_pop_folder) # run callback self.callback() # update frame self.frame += 1
def tstep(self): ''' takes a time step in the simulation ''' start = time.time() # start clock #======================================================================================# #check destinations if active #define motion vectors if destinations active and not everybody is at destination active_dests = len(self.population[ self.population[:, 11] != 0]) # look op this only once if active_dests > 0 and len( self.population[self.population[:, 12] == 0]) > 0: self.population = set_destination(self.population, self.destinations) self.population = check_at_destination( self.population, self.destinations, wander_factor=self.Config.wander_factor_dest) if active_dests > 0 and len( self.population[self.population[:, 12] == 1]) > 0: #keep them at destination self.population = keep_at_destination(self.population, self.Config.isolation_bounds) #======================================================================================# #gravity wells if self.Config.gravity_strength > 0: [self.population, self.last_step_change] = update_gravity_forces( self.population, self.time, self.last_step_change, self.Config.wander_step_size, self.Config.gravity_strength, self.Config.wander_step_duration) #======================================================================================# #activate social distancing above a certain infection threshold if not self.above_act_thresh and self.Config.social_distance_threshold_on > 0: # If not previously above infection threshold activate when threshold reached if self.Config.thresh_type == 'hospitalized': self.above_act_thresh = sum( self.population[:, 11] == 1) >= self.Config.social_distance_threshold_on elif self.Config.thresh_type == 'infected': self.above_act_thresh = sum( self.population[:, 6] == 1) >= self.Config.social_distance_threshold_on elif self.Config.social_distance_threshold_on == 0: self.above_act_thresh = True #deactivate social distancing after infection drops below threshold after using social distancing if self.above_act_thresh and not self.above_deact_thresh and self.Config.social_distance_threshold_off > 0: # If previously went above infection threshold deactivate when threshold reached self.above_deact_thresh = sum(self.population[:,6][self.population[:,11] == 0] == 1) <= \ self.Config.social_distance_threshold_off # activate social distancing at the onset of infection if not self.Config.SD_act_onset: act_social_distancing = self.above_act_thresh and not self.above_deact_thresh and sum( self.population[:, 6] == 1) > 0 # activate social distancing from start of simulation elif self.Config.SD_act_onset: act_social_distancing = self.above_act_thresh and not self.above_deact_thresh #activate social distancing only for compliant individuals if self.Config.social_distance_factor > 0 and act_social_distancing: self.population[(self.population[:,17] == 0) &\ (self.population[:,11] == 0)] = update_repulsive_forces(self.population[(self.population[:,17] == 0) &\ (self.population[:,11] == 0)], self.Config.social_distance_factor) #======================================================================================# #out of bounds #define bounds arrays, excluding those who are marked as having a custom destination if len(self.population[:, 11] == 0) > 0: buffer = 0.0 _xbounds = np.array([[ self.Config.xbounds[0] + buffer, self.Config.xbounds[1] - buffer ]] * len(self.population[self.population[:, 11] == 0])) _ybounds = np.array([[ self.Config.ybounds[0] + buffer, self.Config.ybounds[1] - buffer ]] * len(self.population[self.population[:, 11] == 0])) self.population[self.population[:, 11] == 0] = update_wall_forces( self.population[self.population[:, 11] == 0], _xbounds, _ybounds) #======================================================================================# #update velocities self.population[(self.population[:,11] == 0) |\ (self.population[:,12] == 1)] = update_velocities(self.population[(self.population[:,11] == 0) |\ (self.population[:,12] == 1)], self.Config.max_speed,self.Config.dt) #for dead ones: set velocity and social distancing to 0 for dead ones self.population[:, 3:5][self.population[:, 6] == 3] = 0 self.population[:, 17][self.population[:, 6] == 3] = 1 #update positions self.population = update_positions(self.population, self.Config.dt) #======================================================================================# #find new infections if not self.above_test_thresh and self.Config.testing_threshold_on > 0: # If not previously above infection threshold activate when threshold reached self.above_test_thresh = sum( self.population[:, 6] == 1) >= self.Config.testing_threshold_on # self.above_test_thresh = sum(self.population[:,6] == 1) >= self.Config.social_distance_threshold_on elif self.Config.testing_threshold_on == 0: self.above_test_thresh = True act_testing = self.above_test_thresh and sum( self.population[:, 6] == 1) > 0 self.population, self.destinations = infect( self.population, self.Config, self.frame, send_to_location=self.Config.self_isolate, location_bounds=self.Config.isolation_bounds, destinations=self.destinations, location_no=1, location_odds=self.Config.self_isolate_proportion, test_flag=act_testing) #recover and die self.population = recover_or_die(self.population, self.frame, self.Config) #======================================================================================# #send cured back to population if self isolation active #perhaps put in recover or die class #send cured back to population self.population[:, 11][self.population[:, 6] == 2] = 0 #======================================================================================# #update population statistics self.pop_tracker.update_counts(self.population, self.frame) #======================================================================================# #visualise if self.Config.visualise and ( self.frame % self.Config.visualise_every_n_frame) == 0: draw_tstep(self.Config, self.population, self.pop_tracker, self.frame, self.fig, self.spec, self.ax1, self.ax2, self.tight_bbox) #report stuff to console if (self.Config.verbose) and ((self.frame % self.Config.report_freq) == 0): end = time.time() time_elapsed = end - start # elapsed time sys.stdout.write('\r') sys.stdout.write( '%i: S: %i, I: %i, R: %i, in treatment: %i, F: %i, of total: %i, D: %.5f, GC: %.5f, time: %.5f' % (self.frame, self.pop_tracker.susceptible[-1], self.pop_tracker.infectious[-1], self.pop_tracker.recovered[-1], len(self.population[self.population[:, 10] == 1]), self.pop_tracker.fatalities[-1], self.Config.pop_size, self.pop_tracker.distance_travelled[-1], self.pop_tracker.mean_perentage_covered[-1], time_elapsed)) #save popdata if required if self.Config.save_pop and (self.frame % self.Config.save_pop_freq) == 0: save_population(self.population, self.frame, self.Config.save_pop_folder) #run callback self.callback() #======================================================================================# #update frame self.frame += 1 self.time += self.Config.dt
def tstep(config, vir, pop, pop_tracker, soc, fig, spec, ax1, ax2): ''' takes a time step in the simulation ''' #check destinations if active #define motion vectors if destinations active and not everybody is at destination active_dests = len( pop.population[pop.population[:, 11] != 0]) # look op this only once if active_dests > 0 and len(pop.population[pop.population[:, 12] == 0]) > 0: pop.population = pop.set_destination() pop.population = pop.check_at_destination() if active_dests > 0 and len(pop.population[pop.population[:, 12] == 1]) > 0: #keep them at destination pop.population = pop.keep_at_destination() #out of bounds #define bounds arrays, excluding those who are marked as having a custom destination if len(pop.population[:, 11] == 0) > 0: _xbounds = np.array( [[config.xbounds[0] + 0.02, config.xbounds[1] - 0.02]] * len(pop.population[pop.population[:, 11] == 0])) _ybounds = np.array( [[config.ybounds[0] + 0.02, config.ybounds[1] - 0.02]] * len(pop.population[pop.population[:, 11] == 0])) pop.population[pop.population[:, 11] == 0] = out_of_bounds( pop.population[pop.population[:, 11] == 0], _xbounds, _ybounds) #set randoms if soc.lockdown: if len(pop_tracker.infectious) == 0: mx = 0 else: #mx = np.max(pop_tracker.infectious) mx = pop_tracker.infectious[-1] if len(pop.population[pop.population[:,6] == 1]) >= len(pop.population) * soc.lockdown_percentage or\ mx >= (len(pop.population) * soc.lockdown_percentage) or soc.lockdown_act: soc.lockdown_act = True #reduce speed of all members of society pop.population[:, 5] = np.clip(pop.population[:, 5], a_min=None, a_max=0.00001) #set speeds of complying people to 0 pop.population[:, 5][soc.lockdown_vector == 0] = 0 if len(pop.population[pop.population[:, 6] == 1]) <= len( pop.population) * soc.lockdown_percentage / 2: soc.lockdown_act = False else: #update randoms pop.population = update_randoms(pop.population, pop.pop_size, pop.speed) else: #update randoms pop.population = update_randoms(pop.population, pop.pop_size, pop.speed) #for dead ones: set speed and heading to 0 pop.population[:, 3:5][pop.population[:, 6] == 3] = 0 #update positions pop.population = update_positions(pop.population) #find new infections pop.population, pop.destinations = vir.infect( pop, soc, config, send_to_location=soc.self_isolate, location_bounds=soc.isolation_bounds, destinations=pop.destinations, location_no=1, location_odds=soc.self_isolate_proportion) #recover and die pop.population = vir.recover_or_die(pop, soc, config) #send cured back to population if self isolation active #perhaps put in recover or die class #send cured back to population pop.population[:, 11][pop.population[:, 6] == 2] = 0 #update population statistics pop_tracker.update_counts(pop.population) #visualise if config.visualise: draw_tstep(config, soc, pop.pop_size, pop.population, pop_tracker, config.frame, fig, spec, ax1, ax2) #report stuff to console sys.stdout.write('\r') sys.stdout.write( '%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \ dead: %i, of total: %i' % (config.frame, pop_tracker.susceptible[-1], pop_tracker.infectious[-1], pop_tracker.recovered[-1], len(pop.population[pop.population[:, 10] == 1]), pop_tracker.fatalities[-1], pop.pop_size)) #save popdata if required if config.save_pop and (config.frame % config.save_pop_freq) == 0: pop.save_population(pop.population, config.frame, config.save_pop_folder) #run callback callback(pop, config) #update frame config.frame += 1
def tstep(self): ''' take time step as days ''' active_dests = len(self.pop[self.pop[:, 11] != 0]) # shows population matrix if active_dests > 0 and len(self.pop[self.pop[:, 12] == 0]) > 0: self.pop = set_destination(self.pop, self.destinations) self.pop = check_at_destination( self.pop, self.destinations, wander_factor=self.Config.wander_factor_dest, speed=self.Config.speed) if active_dests > 0 and len(self.pop[self.pop[:, 12] == 1]) > 0: #keep them at destination self.pop = keep_at_destination(self.pop, self.destinations, self.Config.wander_factor) if len(self.pop[:, 11] == 0) > 0: _xbounds = np.array([[ self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02 ]] * len(self.pop[self.pop[:, 11] == 0])) _ybounds = np.array([[ self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02 ]] * len(self.pop[self.pop[:, 11] == 0])) self.pop[self.pop[:, 11] == 0] = out_of_bounds( self.pop[self.pop[:, 11] == 0], _xbounds, _ybounds) #set randoms if self.Config.lockdown: if len(self.pop_tracker.infectious) == 0: mx = 0 else: mx = np.max(self.pop_tracker.infectious) if len(self.pop[self.pop[:,6] == 1]) >= len(self.pop) * self.Config.lockdown_percentage or\ mx >= (len(self.pop) * self.Config.lockdown_percentage): #reduce speed for all population self.pop[:, 5] = np.clip(self.pop[:, 5], a_min=None, a_max=0.001) #set speeds of complying people to 0 self.pop[:, 5][self.Config.lockdown_vector == 0] = 0 else: #random update self.pop = update_randoms(self.pop, self.Config.size_pop, self.Config.speed) else: self.pop = update_randoms(self.pop, self.Config.size_pop, self.Config.speed) #dead people: set speed and heading to 0 self.pop[:, 3:5][self.pop[:, 6] == 3] = 0 #update positions self.pop = update_positions(self.pop) #find new infections self.pop, self.destinations = infect( self.pop, self.Config, self.frame, send_to_location=self.Config.self_isolate, location_bounds=self.Config.isolation_bounds, destinations=self.destinations, location_no=1, location_odds=self.Config.self_isolate_proportion) #set self for recover and die self.pop = recover_or_die(self.pop, self.frame, self.Config) #send cured back to pop if self isolation active or put in recover or die class self.pop[:, 11][self.pop[:, 6] == 2] = 0 self.pop_tracker.update_counts(self.pop) #visualise if self.Config.visualise: draw_tstep(self.Config, self.pop, self.pop_tracker, self.frame, self.figure, self.spec, self.ax1, self.ax2) #report stuff to console sys.stdout.write('\r') sys.stdout.write( '%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \ dead: %i, of total: %i' % (self.frame, self.pop_tracker.susceptible[-1], self.pop_tracker.infectious[-1], self.pop_tracker.recovered[-1], len(self.pop[self.pop[:, 10] == 1]), self.pop_tracker.fatalities[-1], self.Config.size_pop)) #save popdata if required if self.Config.save_pop and (self.frame % self.Config.save_pop_freq) == 0: save_population(self.pop, self.frame, self.Config.save_pop_folder) #run callback self.callback() self.frame += 1
def tstep(self): if self.frame == 0: self.fig, self.spec, self.ax1, self.ax2 = build_fig(self.Config) xbounds = np.array( [[self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02]] * self.Config.pop_size) ybounds = np.array( [[self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02]] * self.Config.pop_size) self.population = out_of_bounds(self.population, xbounds, ybounds) if self.Config.is_lockdown and self.Config.lockdown == False: if len(self.population[(self.population[:, 6] == 1)] ) >= self.Config.lockdown_percentage * self.Config.pop_size: self.Config.lockdown = True print("\nLockdown Started") left_range = [ self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] / 3 - 0.02 ] mid_range = [ self.Config.xbounds[1] / 3 + 0.02, 2 * self.Config.xbounds[1] / 3 - 0.02 ] right_range = [ 2 * self.Config.xbounds[1] / 3 + 0.02, self.Config.xbounds[1] - 0.02 ] bottom_range = [ self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] / 2 - 0.02 ] top_range = [ self.Config.ybounds[1] / 2 + 0.02, self.Config.ybounds[1] - 0.02 ] left_condition = (self.population[:, 1] <= self.Config.xbounds[1] / 3) mid_condition = ( self.population[:, 1] > self.Config.xbounds[1] / 3) & ( self.population[:, 1] <= 2 * self.Config.xbounds[1] / 3) right_condition = (self.population[:, 1] > 2 * self.Config.xbounds[1] / 3) bottom_condition = (self.population[:, 2] <= self.Config.ybounds[1] / 2) top_condition = (self.population[:, 2] > self.Config.ybounds[1] / 2) if self.Config.lockdown: x_left_bottom = np.array( [left_range] * len(self.population[left_condition & bottom_condition])) y_left_bottom = np.array( [bottom_range] * len(self.population[left_condition & bottom_condition])) self.population[left_condition & bottom_condition] = out_of_bounds( self.population[left_condition & bottom_condition], x_left_bottom, y_left_bottom) x_left_top = np.array( [left_range] * len(self.population[left_condition & top_condition])) y_left_top = np.array( [top_range] * len(self.population[left_condition & top_condition])) self.population[left_condition & top_condition] = out_of_bounds( self.population[left_condition & top_condition], x_left_top, y_left_top) x_mid_bottom = np.array( [mid_range] * len(self.population[mid_condition & bottom_condition])) y_mid_bottom = np.array( [bottom_range] * len(self.population[mid_condition & bottom_condition])) self.population[mid_condition & bottom_condition] = out_of_bounds( self.population[mid_condition & bottom_condition], x_mid_bottom, y_mid_bottom) x_mid_top = np.array( [mid_range] * len(self.population[mid_condition & top_condition])) y_mid_top = np.array( [top_range] * len(self.population[mid_condition & top_condition])) self.population[mid_condition & top_condition] = out_of_bounds( self.population[mid_condition & top_condition], x_mid_top, y_mid_top) x_right_bottom = np.array( [right_range] * len(self.population[right_condition & bottom_condition])) y_right_bottom = np.array( [bottom_range] * len(self.population[right_condition & bottom_condition])) self.population[right_condition & bottom_condition] = out_of_bounds( self.population[right_condition & bottom_condition], x_right_bottom, y_right_bottom) x_right_top = np.array( [right_range] * len(self.population[right_condition & top_condition])) y_right_top = np.array( [top_range] * len(self.population[right_condition & top_condition])) self.population[right_condition & top_condition] = out_of_bounds( self.population[right_condition & top_condition], x_right_top, y_right_top) self.population = update_randoms(self.population, self.Config.pop_size, self.Config.speed) self.population[:, 5][self.population[:, 6] == 3] = 0 self.population = update_positions(self.population) self.population = infect(self.population, self.Config, self.frame) self.population = recover_or_die(self.population, self.frame, self.Config) self.pop_tracker.update_counts(self.population) draw_tstep(self.Config, self.population, self.pop_tracker, self.frame, self.fig, self.spec, self.ax1, self.ax2) self.peak_infections = max( self.peak_infections, len(self.population[self.population[:, 6] == 1])) if self.frame == 50: print('\ninfecting patient zero') self.population[0][6] = 1 self.frame += 1