guided_backprop_mask (np_arr):Guided backprop mask
    """
    cam_gb = np.multiply(grad_cam_mask, guided_backprop_mask)
    return cam_gb


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)

    # Grad cam
    gcv2 = GradCam(pretrained_model, target_layer=11)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, target_class)
    print('Grad cam completed')

    # Guided backprop
    GBP = GuidedBackprop(pretrained_model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, target_class)
    print('Guided backpropagation completed')

    # Guided Grad cam
    cam_gb = guided_grad_cam(cam, guided_grads)
    save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
    grayscale_cam_gb = convert_to_grayscale(cam_gb)
    save_gradient_images(grayscale_cam_gb, file_name_to_export + '_GGrad_Cam_gray')
    print('Guided grad cam completed')
Created on Wed Jun 19 17:12:04 2019

@author: Utku Ozbulak - github.com/utkuozbulak
"""
from visualization.misc_functions import (get_example_params,
                                          convert_to_grayscale,
                                          save_gradient_images)
from visualization.vanilla_backprop import VanillaBackprop
# from guided_backprop import GuidedBackprop  # To use with guided backprop
# from integrated_gradients import IntegratedGradients  # To use with integrated grads

if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)
    # Vanilla backprop
    VBP = VanillaBackprop(pretrained_model)
    # Generate gradients
    vanilla_grads = VBP.generate_gradients(prep_img, target_class)

    # Make sure dimensions add up!
    grad_times_image = vanilla_grads * prep_img.detach().numpy()[0]
    # Convert to grayscale
    grayscale_vanilla_grads = convert_to_grayscale(grad_times_image)
    # Save grayscale gradients
    save_gradient_images(
        grayscale_vanilla_grads,
        file_name_to_export + '_Vanilla_grad_times_image_gray')
    print('Grad times image completed.')
Esempio n. 3
0
        # Backward pass
        model_output.backward(gradient=one_hot_output)
        # Convert Pytorch variable to numpy array
        # [0] to get rid of the first channel (1,3,224,224)
        gradients_as_arr = self.gradients.data.numpy()[0]
        return gradients_as_arr


if __name__ == '__main__':
    # one for each class, you might adjust the paths in misc_functions#get_params

    for target_example in range(5):
        (original_image, prep_img, target_class, file_name_to_export, pretrained_model) = \
            get_params(target_example)

        # Guided backprop
        GBP = GuidedBackprop(pretrained_model, prep_img, target_class)
        # Get gradients
        guided_grads = GBP.generate_gradients()
        # Save colored gradients
        save_gradient_images(guided_grads, file_name_to_export + '_Guided_BP_color')
        # Convert to grayscale
        grayscale_guided_grads = convert_to_grayscale(guided_grads)
        # Save grayscale gradients
        save_gradient_images(grayscale_guided_grads, file_name_to_export + '_Guided_BP_gray')
        # Positive and negative saliency maps
        pos_sal, neg_sal = get_positive_negative_saliency(guided_grads)
        save_gradient_images(pos_sal, file_name_to_export + '_pos_sal')
        save_gradient_images(neg_sal, file_name_to_export + '_neg_sal')
        print(f'Guided backprop completed for {target_example}')
Esempio n. 4
0

if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)

    VBP = VanillaBackprop(pretrained_model)
    # GBP = GuidedBackprop(pretrained_model)  # if you want to use GBP dont forget to
    # change the parametre in generate_smooth_grad

    param_n = 50
    param_sigma_multiplier = 4
    smooth_grad = generate_smooth_grad(
        VBP,  # ^This parameter
        prep_img,
        target_class,
        param_n,
        param_sigma_multiplier)

    # Save colored gradients
    save_gradient_images(smooth_grad,
                         file_name_to_export + '_SmoothGrad_color')
    # Convert to grayscale
    grayscale_smooth_grad = convert_to_grayscale(smooth_grad)
    # Save grayscale gradients
    save_gradient_images(grayscale_smooth_grad,
                         file_name_to_export + '_SmoothGrad_gray')
    print('Smooth grad completed')
        self.model.zero_grad()
        # Target for backprop
        one_hot_output = torch.FloatTensor(1, model_output.size()[-1]).zero_()
        one_hot_output[0][target_class] = 1
        # Backward pass
        model_output.backward(gradient=one_hot_output)
        # Convert Pytorch variable to numpy array
        # [0] to get rid of the first channel (1,3,224,224)
        gradients_as_arr = self.gradients.data.numpy()[0]
        return gradients_as_arr


if __name__ == '__main__':
    # Get params
    target_example = 1  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)
    # Vanilla backprop
    VBP = VanillaBackprop(pretrained_model)
    # Generate gradients
    vanilla_grads = VBP.generate_gradients(prep_img, target_class)
    # Save colored gradients
    save_gradient_images(vanilla_grads,
                         file_name_to_export + '_Vanilla_BP_color')
    # Convert to grayscale
    grayscale_vanilla_grads = convert_to_grayscale(vanilla_grads)
    # Save grayscale gradients
    save_gradient_images(grayscale_vanilla_grads,
                         file_name_to_export + '_Vanilla_BP_gray')
    print('Vanilla backprop completed')
        # Generate xbar images
        xbar_list = self.generate_images_on_linear_path(input_image, steps)
        # Initialize an iamge composed of zeros
        integrated_grads = np.zeros(input_image.size())
        for xbar_image in xbar_list:
            # Generate gradients from xbar images
            single_integrated_grad = self.generate_gradients(
                xbar_image, target_class)
            # Add rescaled grads from xbar images
            integrated_grads = integrated_grads + single_integrated_grad / steps
        # [0] to get rid of the first channel (1,3,224,224)
        return integrated_grads[0]


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)
    # Vanilla backprop
    IG = IntegratedGradients(pretrained_model)
    # Generate gradients
    integrated_grads = IG.generate_integrated_gradients(
        prep_img, target_class, 100)
    # Convert to grayscale
    grayscale_integrated_grads = convert_to_grayscale(integrated_grads)
    # Save grayscale gradients
    save_gradient_images(grayscale_integrated_grads,
                         file_name_to_export + '_Integrated_G_gray')
    print('Integrated gradients completed.')