def conf_matrix(self, y_test, y_pred, clf, uniqueNames): cnf_matrix = confusion_matrix(y_test.values, y_pred) np.set_printoptions(precision=2) # Plot non-normalized confusion matrix plt.figure() vis = Visualisation() class_names = uniqueNames vis.plot_confusion_matrix( clf, cnf_matrix, classes=class_names, title='Confusion matrix, without normalization')
def __init__(self, configFilepath=None): #configFilepath = r"C:\Users\ashvin\Desktop\UnderDevelopment\sentimentConfig.csv" df = pd.read_csv(configFilepath) df.set_index('Parameters', inplace=True) reviews = df.loc['paths', 'Value'].split(',') catNum = df.loc['numOfCat', 'Value'] catTypes = df.loc['catType', 'Value'].split(',') sentimentLabel = df.loc['train', 'Value'] sentiment = sa.SentimentTrain() acc, allReviews = sentiment.extract(reviews, catNum, catTypes, sentimentLabel) visuals = Visualisation(df=None, target=None) visuals.wordCloud(allReviews)
def __init__(self, df, clusterSizes=None): Unsupervised.__init__(self) self.df = df if clusterSizes == None: self.scores = [] clusterSizes = [2, 3, 4, 5, 6, 7, 8, 9, 10] for clusterSize in clusterSizes: self.kmeans = KMeans(n_clusters=clusterSize) self.fit() self.labels, self.centroids, self.silhouette_avg = self.predict( ) self.scores.append(self.silhouette_avg) visuals = Visualisation() visuals.silhouetteScores(self.scores, clusterSizes) else: self.kmeans = KMeans(n_clusters=clusterSizes) self.fit() self.labels, self.centroids, _ = self.predict()
def __init__(self, df=None): #configFilepath = r"C:\Users\ashvin\Desktop\UnderDevelopment\sentimentConfig.csv" #df = pd.read_csv(configFilepath) #df.set_index('Parameters', inplace = True) print('creating Results directory--------> at {}'.format(os.getcwd())) try: os.makedirs('results') except: pass reviews = df.loc['paths', 'Value'].split(',') catNum = df.loc['numOfCat', 'Value'] catTypes = df.loc['catType', 'Value'].split(',') sentimentLabel = df.loc['train', 'Value'] sentiment = sa.SentimentTrain() acc, allReviews = sentiment.extract(reviews, catNum, catTypes, sentimentLabel) visuals = Visualisation(df=None, target=None) visuals.wordCloud(allReviews)
def __init__(self, configFilepath=None): self.configFilepath = configFilepath configDf = pd.read_csv(configFilepath, sep=',') configDf.set_index('Parameters', inplace=True) columnsConsidered = configDf.loc['ColumnsConsidered', 'Value'] imputation = configDf.loc['Imputation', 'Value'] target = configDf.loc['Target', 'Value'] clf = configDf.loc['Classifier', 'Value'] modelingType = configDf.loc['ModelingType', 'Value'] filepath = configDf.loc['filepath', 'Value'] separator = configDf.loc['separator', 'Value'] temp1 = DataQualityCheck(filepath, target=target, separator=separator, columnsConsidered=columnsConsidered) df1 = temp1.considerColumns() temp1.checkMissingValues() temp1.checkOutliers() temp2 = DataPreparation(imputation=imputation) df1 = temp2.convertCategoricalToDummy(df1) df1 = temp2.imputation(df1) df1 = temp2.featureNormalisation(df1) if modelingType == 'classification': if clf == 'Logistic': temp3 = Logistic(target=target, df=df1) scores = temp3.runLogistic() elif clf == 'SVM': temp3 = SVM(target=target, df=df1) scores = temp3.runSVM() elif clf == 'RF': temp3 = RandomForestClf(target=target, df=df1) scores = temp3.runRF() elif clf == 'NN': temp3 = NeuralNetwork(target=target, df=df1) scores = temp3.runNN() elif modelingType == 'regression': if clf == 'Linear': temp3 = Linear(target=target, df=df1) scores = temp3.runLinear() elif clf == 'LassoRegression': temp3 = LassoRegression(target=target, df=df1) scores = temp3.runLasso() elif clf == 'RidgeRegression': temp3 = RidgeRegression(target=target, df=df1) scores = temp3.runRidge() elif clf == 'RandomForest': temp3 = RandomForestReg(target=target, df=df1) scores = temp3.runRF() print('scores for classifier {} are: {}'.format( configDf.loc['Classifier', 'Value'], scores)) temp4 = Visualisation(df=df1, target=target)
agents = [LeftAgent, StayAgent, RandomAgent] world = World(WORLD_SIZE) world.add_obstacles(COUNT_OBSTACLES) world.add_food(COUNT_FOOD) for player_index in range(COUNT_PLAYERS): random_position = [np.random.randint(0, WORLD_SIZE[0]), np.random.randint(0, WORLD_SIZE[1])] bot = Player(random_position, player_index) Agent = np.random.choice(agents) bot.set_agent(Agent()) world.player_register(bot) if IS_VISUALISATION: view = Visualisation(world) running = True counter = 1 while running and counter < COUNT_EPOCH: world.tick() if IS_VISUALISATION: view.draw_objects() view.draw_players() view.append_food() view.vis_game.display.flip() for event in view.vis_game.event.get(): if event.type == view.vis_game.QUIT: running = False else: print(world)
def ROCplots(self, ytest, ypred_prob, clf): vis = Visualisation() vis.ROCplots(ytest, ypred_prob, clf)
def residVsFitted(self, ypred, ytest, clf): vis = Visualisation() vis.residVsPredPlots(ypred, ytest, clf)
def normalQQ(self, ypred, ytest, clf): vis = Visualisation() vis.normalQQplots(ypred, ytest, clf)
def precisionVsrecallPlots(self, ytest, ypred_prob, clf): vis = Visualisation() vis.precVsRecall(ytest, ypred_prob, clf)
def jointPlot(self, df, target): vis = Visualisation() vis.snsJointPlots(df, target)
def saveBoxPlots(self, df): vis = Visualisation() vis.boxplot(df)
def savePairPlots(self, df): vis = Visualisation() vis.pairplot(df)
def hist(self, df): vis = Visualisation() vis.histogram(df)
def corr_plot(self, df, clf): vis = Visualisation() vis.correlationPlot(df, clf)
def __init__(self): self.visualization = Visualisation() self.controller = Controller()
def swarmPlots(self, df, target): vis = Visualisation() vis.snsSwarmPlots(df, target)