Esempio n. 1
0
def main():
    I, Y = load(40)

    I = I[20:40]
    X = preprocess(I, num_levels=4)

    for x, i in zip(X, I):
        plt.imshow(i)
        plt.show()
        plt.imshow(features2image2(x, level=4))
        plt.show()

    vis(X, Y)
Esempio n. 2
0
def main():
    x_train = np.mat([[0], [1], [0], [1]])
    y_train = np.mat([[1], [0], [1], [0]])

    model = NOT()

    minimize_operation = tf.train.AdamOptimizer(0.01).minimize(model.loss)

    session = tf.Session()

    session.run(tf.global_variables_initializer())

    for epoch in range(10000):
        session.run(minimize_operation, {model.x: x_train, model.y: y_train})

    W, b, loss = session.run([model.W, model.b, model.loss], {
        model.x: x_train,
        model.y: y_train
    })
    print("W = %s, b = %s, \n loss = \n %s" % (W, b, loss))

    session.close()

    graph = vis(W, b)
    graph.plot(x_train, y_train)
Esempio n. 3
0
def main():
    x_train = np.mat([[0, 0], [0, 1], [1, 0], [1, 1]])
    y_train = np.mat([[0], [1], [1], [0]])

    model = XOR()

    minimize_operation = tf.train.AdamOptimizer(0.01).minimize(model.loss)

    session = tf.Session()

    session.run(tf.global_variables_initializer())

    for epoch in range(10000):
        session.run(minimize_operation, {model.x: x_train, model.y: y_train})

    W1, W2, b1, b2, loss = session.run(
        [model.W1, model.W2, model.b1, model.b2, model.loss], {
            model.x: x_train,
            model.y: y_train
        })
    print("W1 = %s, W2 = %s, b1 = %s, b2 = %s, \n loss = \n %s" %
          (W1, W2, b1, b2, loss))

    session.close()

    graph = vis(W1, W2, b1, b2)
    graph.plot(x_train, y_train)
Esempio n. 4
0
    def compute_and_draw_line(self,
                              p1x,
                              p1y,
                              p2x,
                              p2y,
                              p3x,
                              p3y,
                              p4x,
                              p4y,
                              p5x,
                              p5y,
                              p6x=None,
                              p6y=None,
                              p7x=None,
                              p7y=None,
                              p8x=None,
                              p8y=None,
                              p9x=None,
                              p9y=None,
                              densities=None,
                              image_size=32):
        """
		computes and draws lines into images, batchwise
		:param batch_of_substroke: vector of control points of substroke [batch_size, 5, 2]
		:return: batch of images
		"""
        image_combined = torch.zeros(100, image_size, image_size).cuda()
        vis_instance = vis()

        if densities is not None:
            points = [
                p1x, p1y, p2x, p2y, p3x, p3y, p4x, p4y, p5x, p5y, p6x, p6y,
                p7x, p7y, p8x, p8y, p9x, p9y
            ]
            #points = torch.clamp()
            for i in range(8):
                #points[i] = torch.clamp(points[i], 0.0, 30.9)
                image_combined = vis_instance.render_line(x1=points[2 * i],
                                                          y1=points[i + 1],
                                                          x2=points[2 * i + 2],
                                                          y2=points[2 * i + 3],
                                                          image_h=image_size,
                                                          image_w=image_size,
                                                          image=image_combined,
                                                          density=densities[:,
                                                                            i])
        else:
            points = [p1x, p1y, p2x, p2y, p3x, p3y, p4x, p4y, p5x, p5y]

            for i in range(4):
                image_combined = vis_instance.render_line(x1=points[2 * i],
                                                          y1=points[2 * i + 1],
                                                          x2=points[2 * i + 2],
                                                          y2=points[2 * i + 3],
                                                          image_h=image_size,
                                                          image_w=image_size,
                                                          image=image_combined)
        return image_combined
Esempio n. 5
0
def main():
    x_arr = []
    y_arr = []
    z_arr = []
    with open(
            '/home/vebovs/Desktop/machine-learning/regression/linear_regression_3d/day_length_weight.csv'
    ) as csvfile:
        readCSV = csv.reader(csvfile, delimiter=',')
        for row in readCSV:
            x = [float(row[2])]
            y = [float(row[1])]
            z = [float(row[0])]

            x_arr.append(x)
            y_arr.append(y)
            z_arr.append(z)

    x_train = np.mat(x_arr)  # weight
    y_train = np.mat(y_arr)  # length
    z_train = np.mat(z_arr)  # day

    model = lgm()

    learning_rate = 0.0000001

    minimize_operation = tf.train.GradientDescentOptimizer(
        learning_rate).minimize(model.loss)

    session = tf.Session()

    session.run(tf.global_variables_initializer())

    for epoch in range(10000):
        session.run(minimize_operation, {
            model.x: x_train,
            model.y: y_train,
            model.z: z_train
        })

    W, M, b, loss = session.run([model.W, model.M, model.b, model.loss], {
        model.x: x_train,
        model.y: y_train,
        model.z: z_train
    })
    print("W = %s, M = %s, b = %s, loss = %s" % (W, M, b, loss))

    session.close()

    graph = vis(W, M, b)
    graph.plot(x_arr, y_arr, z_arr, x_train, y_train, z_train, 'weight',
               'length', 'day')
Esempio n. 6
0
def visual(output: torch.Tensor,
           ratio: float,
           raw_img: np.ndarray,
           cls_conf=0.35) -> np.ndarray:
    if output is None:
        return raw_img
    output = output.cpu()
    bboxes = output[:, 0:4]
    # preprocessing: resize
    bboxes /= ratio
    cls = output[:, 6]
    scores = output[:, 4] * output[:, 5]
    vis_res = vis(raw_img, bboxes, scores, cls, cls_conf, COCO_CLASSES)
    return vis_res
Esempio n. 7
0
    def visual(self, output, img_info, cls_conf=0.35):
        ratio = img_info["ratio"]
        img = img_info["raw_img"]
        if output is None:
            return img
        output = output.numpy()

        # preprocessing: resize
        bboxes = output[:, 0:4] / ratio

        cls = output[:, 6]
        scores = output[:, 4] * output[:, 5]

        vis_res = vis(img, bboxes, scores, cls, cls_conf, self.cls_names)
        return vis_res
Esempio n. 8
0
def main():
    x_arr = []
    y_arr = []
    with open(
            '/home/vebovs/Desktop/machine-learning/regression/non_linear_regression_2d/day_head_circumference.csv'
    ) as csvfile:
        readCSV = csv.reader(csvfile, delimiter=',')
        for row in readCSV:
            x = [float(row[0])]
            y = [float(row[1])]

            x_arr.append(x)
            y_arr.append(y)

    x_train = np.mat(x_arr)  # day
    y_train = np.mat(y_arr)  # head_circumference

    model = lgm()

    learning_rate = 0.00001

    minimize_operation = tf.train.AdamOptimizer(learning_rate).minimize(
        model.loss)

    session = tf.Session()

    session.run(tf.global_variables_initializer())

    for epoch in range(10000):
        session.run(minimize_operation, {model.x: x_train, model.y: y_train})

    W, b, loss = session.run([model.W, model.b, model.loss], {
        model.x: x_train,
        model.y: y_train
    })
    print("W = %s, b = %s, loss = %s" % (W, b, loss))

    session.close()

    graph = vis(W, b)
    graph.plot(x_arr, x_train, y_train, 'day', 'head circumference')
Esempio n. 9
0
def yolox(source, model_name, model_size, video_path, output, fps, frame_size):
    """
    This function is used to detect objects in a video

    :param model_name: The name of the model to use
    :param model_size: Size of the model
    :param video_path: Path to the video file
    :param output: The output file name
    :param fps: The FPS (frames per second) of the output video
    :param frame_size: The size of the frame to be saving
    """
    """
    基于 yolox 的目标检测器
    """
    model_w = model_size[0]
    model_h = model_size[1]
    # click.echo(click.get_current_context().params)
    device_info = getDeviceInfo()  # type: dai.DeviceInfo
    with dai.Device(create_pipeline(source, model_name, model_w, model_h), device_info) as device:
        print("Starting pipeline...")
        fps_handler = FPSHandler()
        if source:
            cap = cv2.VideoCapture(video_path)
            frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            frame_shape = [frame_height, frame_width]
            print("CAP_PROP_FRAME_SHAPE: %s" % frame_shape)
            cap_fps = int(cap.get(cv2.CAP_PROP_FPS))
            print("CAP_PROP_FPS: %d" % cap_fps)

            yolox_det_in = device.getInputQueue("yolox_det_in")
        else:
            cam_out = device.getOutputQueue("cam_out", 1, True)
        yolox_det_nn = device.getOutputQueue("yolox_det_nn")

        def should_run():
            if source:
                return cap.isOpened()
            else:
                return True

        def get_frame():
            """
            Get the current frame from the camera and return it
            """
            if source:
                return cap.read()
            else:
                return True, cam_out.get().getCvFrame()

        if output:
            output.parent.mkdir(parents=True, exist_ok=True)
            fourcc = cv2.VideoWriter_fourcc(*"mp4v")
            writer = cv2.VideoWriter(str(output), fourcc, fps, frame_size)

        while should_run():
            read_correctly, frame = get_frame()
            fps_handler.tick("Frame")
            if not read_correctly:
                break

            frame_debug = frame.copy()
            if source:
                run_nn(yolox_det_in, to_planar(frame, (model_h, model_w)), model_w, model_h)
            yolox_det_data = yolox_det_nn.get()

            res = toTensorResult(yolox_det_data).get("output")
            fps_handler.tick("nn")
            predictions = demo_postprocess(res, (model_h, model_w), p6=False)[0]

            boxes = predictions[:, :4]
            scores = predictions[:, 4, None] * predictions[:, 5:]

            boxes_xyxy = np.ones_like(boxes)
            boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
            boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
            boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
            boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0

            input_shape = np.array([model_h, model_w])
            min_r = (input_shape / frame.shape[:2]).min()
            offset = (np.array(frame.shape[:2]) * min_r - input_shape) / 2
            offset = np.ravel([offset, offset])
            boxes_xyxy = (boxes_xyxy + offset[::-1]) / min_r

            dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.2)

            if dets is not None:
                final_boxes = dets[:, :4]
                final_scores, final_cls_inds = dets[:, 4], dets[:, 5]
                frame_debug = vis(
                    frame_debug,
                    final_boxes,
                    final_scores,
                    final_cls_inds,
                    conf=0.5,
                    class_names=LABELS.get(model_name),
                )
            cv2.imshow("", frame_debug)
            if output:
                writer.write(cv2.resize(frame_debug, frame_size))

            key = cv2.waitKey(1)
            if key in [ord("q"), 27]:
                break
            elif key == ord("s"):
                cv2.imwrite(
                    "saved_%s.jpg" % time.strftime("%Y%m%d_%H%M%S", time.localtime()),
                    frame_debug,
                )
        fps_handler.printStatus()
        if source:
            cap.release()
        if output:
            writer.release()
    cv2.destroyAllWindows()
Esempio n. 10
0
    u = irisdat[i]
    if (i <= 50):
        val.append([u, 0])
    elif (50 < i and i <= 100):
        val.append([u, 1])
    elif (100 < i and i <= 150):
        val.append([u, 2])

random.shuffle(val)

training = val[0:99]
testing = val[100:]
iters = 1000
NN.train(training, iters, 0.32)
#print("Previously seen (training) example progress: ")
#NN.test(training)
#print("----------------------------------------------")
print("New and Never Before Seen (testing) example set: ")
NN.test(testing)
vis(NN.totalErr)
end_time = time.process_time()

now = datetime.now()

current_time = now.strftime("%H:%M:%S")
print("Time Started: ", starting_time)
print("Time Finished: ", current_time)
print("Time Elapsed: ", (end_time - begin))
print("Learning Rate: " + str(NN.alpha))
print("Iterations Trained: " + str(iters))