def test_plot_sample(verbose=False):
    conf = loader.default_conf.copy()
    myloader = loader.LocalSegmentationLoader()
    myvis = visualizer.LocalSegVisualizer(class_file=class_file, conf=conf)
    sample = myloader[1]

    if verbose:
        myvis.plot_sample(sample)
def test_plot_sample_2d():
    conf = loader.default_conf.copy()
    conf['label_encoding'] = 'spatial_2d'
    conf['grid_dims'] = 2
    conf['grid_size'] = 10
    myloader = loader.LocalSegmentationLoader(conf=conf)
    myvis = visualizer.LocalSegVisualizer(class_file=class_file, conf=conf)
    sample = myloader[1]

    return
    myvis.plot_sample(sample)
def test_plot_sample(verbose=False):
    return
    conf = loader.default_conf.copy()
    myloader = loader.WarpingSegmentationLoader(lst_file='val')
    label_coder = LabelCoding(conf=conf)
    myvis = visualizer.LocalSegVisualizer(class_file=class_file,
                                          conf=conf,
                                          label_coder=label_coder)
    sample = myloader[1]

    if verbose:
        myvis.plot_sample(sample)
def test_scatter_plot_2d():
    conf = loader.default_conf.copy()
    conf['label_encoding'] = 'spatial_2d'
    conf['grid_dims'] = 2
    conf['grid_size'] = 10
    myloader = loader.get_data_loader(conf=conf,
                                      batch_size=6,
                                      pin_memory=False,
                                      split='val')

    batch = next(myloader.__iter__())
    myvis = visualizer.LocalSegVisualizer(class_file=class_file, conf=conf)

    label = batch['label'][0].numpy()
    prediction = np.random.random((label.shape)) - 0.5 + label

    myvis.scatter_plot(label=label, prediction=prediction)
def test_plot_batch_2d():
    conf = loader.default_conf.copy()
    conf['label_encoding'] = 'spatial_2d'
    conf['grid_dims'] = 2
    conf['grid_size'] = 10
    myloader = loader.get_data_loader(conf=conf,
                                      batch_size=6,
                                      pin_memory=False,
                                      split='val')
    batch = next(myloader.__iter__())

    myvis = visualizer.LocalSegVisualizer(class_file=class_file, conf=conf)
    start_time = time.time()

    return
    myvis.plot_batch(batch)
    duration = time.time() - start_time

    logging.info("Visualizing one batch took {} seconds".format(duration))
def test_plot_batch(verbose=False):
    conf = loader.default_conf.copy()
    conf['dataset'] = 'blender_mini'

    return

    myloader = loader.get_data_loader(conf=conf,
                                      batch_size=6,
                                      pin_memory=False,
                                      split='train')
    batch = next(myloader.__iter__())

    myvis = visualizer.LocalSegVisualizer(class_file=class_file, conf=conf)
    if verbose:
        start_time = time.time()
        myvis.plot_batch(batch)
        duration = time.time() - start_time

    logging.info("Visualizing one batch took {} seconds".format(duration))
def test_plot_batch(verbose=False):
    return
    conf = loader.default_conf.copy()

    myloader = loader.get_data_loader(conf=conf,
                                      batch_size=6,
                                      pin_memory=False,
                                      split='train',
                                      lst_file='val')
    batch = next(myloader.__iter__())

    label_coder = LabelCoding(conf=conf)
    myvis = visualizer.LocalSegVisualizer(class_file=class_file,
                                          conf=conf,
                                          label_coder=label_coder)
    if verbose:
        start_time = time.time()
        myvis.plot_batch(batch)
        duration = time.time() - start_time

    logging.info("Visualizing one batch took {} seconds".format(duration))
Esempio n. 8
0
def test_loading_blender(verbose=False):

    conf = loader.default_conf.copy()
    conf["dataset"] = "blender_mini"
    conf['num_worker'] = 8

    # conf['transform'] = loader.mytransform

    myloader = loader.get_data_loader(
        conf=conf, batch_size=8, pin_memory=False)

    for step, sample in enumerate(myloader):

        myvis = visualizer.LocalSegVisualizer(
            class_file=conf["vis_file"], conf=conf)
        start_time = time.time()
        myvis.plot_batch(sample)
        duration = time.time() - start_time # NOQA

        if step == 5:
            break

        if verbose:
            plt.show()