def train_agent(restore_prior_from='data/Prior.ckpt', restore_agent_from='data/Prior.ckpt', scoring_function='tanimoto', scoring_function_kwargs=None, save_dir=None, learning_rate=0.0005, batch_size=64, n_steps=3000, num_processes=0, sigma=60, experience_replay=0): voc = Vocabulary(init_from_file="data/Voc") start_time = time.time() Prior = RNN(voc) Agent = RNN(voc) logger = VizardLog('data/logs') # By default restore Agent to same model as Prior, but can restore from already trained Agent too. # Saved models are partially on the GPU, but if we dont have cuda enabled we can remap these # to the CPU. if torch.cuda.is_available(): Prior.rnn.load_state_dict(torch.load(restore_prior_from)) Agent.rnn.load_state_dict(torch.load(restore_agent_from)) else: Prior.rnn.load_state_dict( torch.load(restore_prior_from, map_location=lambda storage, loc: storage)) Agent.rnn.load_state_dict( torch.load(restore_agent_from, map_location=lambda storage, loc: storage)) # We dont need gradients with respect to Prior for param in Prior.rnn.parameters(): param.requires_grad = False optimizer = torch.optim.Adam(Agent.rnn.parameters(), lr=0.0005) # Scoring_function scoring_function = get_scoring_function(scoring_function=scoring_function, num_processes=num_processes, **scoring_function_kwargs) # For policy based RL, we normally train on-policy and correct for the fact that more likely actions # occur more often (which means the agent can get biased towards them). Using experience replay is # therefor not as theoretically sound as it is for value based RL, but it seems to work well. experience = Experience(voc) # Log some network weights that can be dynamically plotted with the Vizard bokeh app logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "init_weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "init_weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "init_weight_GRU_layer_2_b_hh") # Information for the logger step_score = [[], []] print("Model initialized, starting training...") for step in range(n_steps): # Sample from Agent seqs, agent_likelihood, entropy = Agent.sample(batch_size) # Remove duplicates, ie only consider unique seqs unique_idxs = unique(seqs) seqs = seqs[unique_idxs] agent_likelihood = agent_likelihood[unique_idxs] entropy = entropy[unique_idxs] # Get prior likelihood and score prior_likelihood, _ = Prior.likelihood(Variable(seqs)) smiles = seq_to_smiles(seqs, voc) score = scoring_function(smiles) # Calculate augmented likelihood augmented_likelihood = prior_likelihood + sigma * Variable(score) loss = torch.pow((augmented_likelihood - agent_likelihood), 2) # Experience Replay # First sample if experience_replay and len(experience) > 4: exp_seqs, exp_score, exp_prior_likelihood = experience.sample(4) exp_agent_likelihood, exp_entropy = Agent.likelihood( exp_seqs.long()) exp_augmented_likelihood = exp_prior_likelihood + sigma * exp_score exp_loss = torch.pow( (Variable(exp_augmented_likelihood) - exp_agent_likelihood), 2) loss = torch.cat((loss, exp_loss), 0) agent_likelihood = torch.cat( (agent_likelihood, exp_agent_likelihood), 0) # Then add new experience prior_likelihood = prior_likelihood.data.cpu().numpy() new_experience = zip(smiles, score, prior_likelihood) experience.add_experience(new_experience) # Calculate loss loss = loss.mean() # Add regularizer that penalizes high likelihood for the entire sequence loss_p = -(1 / agent_likelihood).mean() loss += 5 * 1e3 * loss_p # Calculate gradients and make an update to the network weights optimizer.zero_grad() loss.backward() optimizer.step() # Convert to numpy arrays so that we can print them augmented_likelihood = augmented_likelihood.data.cpu().numpy() agent_likelihood = agent_likelihood.data.cpu().numpy() # Print some information for this step time_elapsed = (time.time() - start_time) / 3600 time_left = (time_elapsed * ((n_steps - step) / (step + 1))) print( "\n Step {} Fraction valid SMILES: {:4.1f} Time elapsed: {:.2f}h Time left: {:.2f}h" .format(step, fraction_valid_smiles(smiles) * 100, time_elapsed, time_left)) print(" Agent Prior Target Score SMILES") for i in range(10): print(" {:6.2f} {:6.2f} {:6.2f} {:6.2f} {}".format( agent_likelihood[i], prior_likelihood[i], augmented_likelihood[i], score[i], smiles[i])) # Need this for Vizard plotting step_score[0].append(step + 1) step_score[1].append(np.mean(score)) # Log some weights logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "weight_GRU_layer_2_b_hh") logger.log("\n".join([smiles + "\t" + str(round(score, 2)) for smiles, score in zip \ (smiles[:12], score[:12])]), "SMILES", dtype="text", overwrite=True) logger.log(np.array(step_score), "Scores") # If the entire training finishes, we create a new folder where we save this python file # as well as some sampled sequences and the contents of the experinence (which are the highest # scored sequences seen during training) if not save_dir: save_dir = 'data/results/run_' + time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime()) os.makedirs(save_dir) copyfile('train_agent.py', os.path.join(save_dir, "train_agent.py")) experience.print_memory(os.path.join(save_dir, "memory")) torch.save(Agent.rnn.state_dict(), os.path.join(save_dir, 'Agent.ckpt')) seqs, agent_likelihood, entropy = Agent.sample(256) prior_likelihood, _ = Prior.likelihood(Variable(seqs)) prior_likelihood = prior_likelihood.data.cpu().numpy() smiles = seq_to_smiles(seqs, voc) score = scoring_function(smiles) with open(os.path.join(save_dir, "sampled"), 'w') as f: f.write("SMILES Score PriorLogP\n") for smiles, score, prior_likelihood in zip(smiles, score, prior_likelihood): f.write("{} {:5.2f} {:6.2f}\n".format(smiles, score, prior_likelihood))
def hill_climbing(pattern=None, restore_agent_from='data/Prior.ckpt', scoring_function='tanimoto', scoring_function_kwargs=None, save_dir=None, learning_rate=0.0005, batch_size=64, n_steps=10, num_processes=0, use_custom_voc="data/Voc"): voc = Vocabulary(init_from_file=use_custom_voc) start_time = time.time() if pattern: Agent = scaffold_constrained_RNN(voc) else: Agent = RNN(voc) logger = VizardLog('data/logs') if torch.cuda.is_available(): Agent.rnn.load_state_dict(torch.load(restore_agent_from)) else: Agent.rnn.load_state_dict( torch.load(restore_agent_from, map_location=lambda storage, loc: storage)) optimizer = torch.optim.Adam(Agent.rnn.parameters(), lr=learning_rate) # Scoring_function scoring_function = get_scoring_function(scoring_function=scoring_function, num_processes=num_processes, **scoring_function_kwargs) # For policy based RL, we normally train on-policy and correct for the fact that more likely actions # occur more often (which means the agent can get biased towards them). Using experience replay is # therefor not as theoretically sound as it is for value based RL, but it seems to work well. experience = Experience(voc) # Log some network weights that can be dynamically plotted with the Vizard bokeh app logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "init_weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "init_weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "init_weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "init_weight_GRU_layer_2_b_hh") # Information for the logger step_score = [[], []] print("Model initialized, starting training...") for step in range(n_steps): # Sample from Agent if pattern: seqs, agent_likelihood, entropy = Agent.sample(pattern, batch_size) else: seqs, agent_likelihood, entropy = Agent.sample(batch_size) gc.collect() # Remove duplicates, ie only consider unique seqs unique_idxs = unique(seqs) seqs = seqs[unique_idxs] agent_likelihood = agent_likelihood[unique_idxs] entropy = entropy[unique_idxs] # Get prior likelihood and score smiles = seq_to_smiles(seqs, voc) score = scoring_function(smiles) new_experience = zip(smiles, score, agent_likelihood) experience.add_experience(new_experience) indexes = np.flip(np.argsort(np.array(score))) # Train the agent for 10 epochs on hill-climbing procedure for epoch in range(10): loss = Variable(torch.zeros(1)) counter = 0 seen_seqs = [] for j in indexes: if counter > 50: break seq = seqs[j] s = smiles[j] if s not in seen_seqs: seen_seqs.append(s) log_p, _ = Agent.likelihood(Variable(seq).view(1, -1)) loss -= log_p.mean() counter += 1 loss /= counter optimizer.zero_grad() loss.backward() optimizer.step() # Print some information for this step time_elapsed = (time.time() - start_time) / 3600 time_left = (time_elapsed * ((n_steps - step) / (step + 1))) print( "\n Step {} Fraction valid SMILES: {:4.1f} Time elapsed: {:.2f}h Time left: {:.2f}h" .format(step, fraction_valid_smiles(smiles) * 100, time_elapsed, time_left)) print(" Agent Prior Target Score SMILES") for i in range(10): print(" {:6.2f} {}".format(score[i], smiles[i])) # Need this for Vizard plotting step_score[0].append(step + 1) step_score[1].append(np.mean(score)) # Log some weights logger.log(Agent.rnn.gru_2.weight_ih.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_ih") logger.log(Agent.rnn.gru_2.weight_hh.cpu().data.numpy()[::100], "weight_GRU_layer_2_w_hh") logger.log(Agent.rnn.embedding.weight.cpu().data.numpy()[::30], "weight_GRU_embedding") logger.log(Agent.rnn.gru_2.bias_ih.cpu().data.numpy(), "weight_GRU_layer_2_b_ih") logger.log(Agent.rnn.gru_2.bias_hh.cpu().data.numpy(), "weight_GRU_layer_2_b_hh") logger.log("\n".join([smiles + "\t" + str(round(score, 2)) for smiles, score in zip \ (smiles[:12], score[:12])]), "SMILES", dtype="text", overwrite=True) logger.log(np.array(step_score), "Scores") # If the entire training finishes, we create a new folder where we save this python file # as well as some sampled sequences and the contents of the experinence (which are the highest # scored sequences seen during training) if not save_dir: save_dir = 'data/results/run_' + time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime()) try: os.makedirs(save_dir) except: print("Folder already existing... overwriting previous results") copyfile('train_agent.py', os.path.join(save_dir, "train_agent.py")) experience.print_memory(os.path.join(save_dir, "memory")) torch.save(Agent.rnn.state_dict(), os.path.join(save_dir, 'Agent.ckpt')) previous_smiles = [] with open(os.path.join(save_dir, "memory.smi"), 'w') as f: for i, exp in enumerate(experience.memory): try: if Chem.MolToSmiles( Chem.rdmolops.RemoveStereochemistry( Chem.MolFromSmiles( exp[0]))) not in previous_smiles: f.write("{}\n".format(exp[0])) previous_smiles.append( Chem.MolToSmiles( Chem.rdmolops.RemoveStereochemistry( Chem.MolFromSmiles(exp[0])))) except: pass
restore_agent_from='data/Prior.ckpt', scoring_function='tanimoto', scoring_function_kwargs=None, save_dir=None, learning_rate=0.0005, batch_size=64, n_steps=3000, num_processes=0, sigma=60, experience_replay=0 ) voc = Vocabulary(init_from_file='data/Voc') start_time = time.time() Prior = RNN(voc) Agent = RNN(voc) logger = VizardLog('data/logs') # By default restore Agent to same model as Prior, but can restore from already trained Agent too. # Saved models are partially on the GPU, but if we dont have cuda enabled we can remap these # to the CPU. if torch.cuda.is_available(): Prior.rnn.load_state_dict(torch.load('data/Prior.ckpt')) Agent.rnn.load_state_dict(torch.load(restore_agent_from)) else: Prior.rnn.load_state_dict(torch.load('data/Prior.ckpt', map_location=lambda storage, loc:storage)) Agent.rnn.load_state_dict(torch.load(restore_agent_from, map_location=lambda storage, loc:storage)) # We dont need gradients with respect to Prior for param in Prior.rnn.parameters(): param.requires_grad = False