Esempio n. 1
0
    def setUp(self):

        train_dataset_path = VmafConfig.test_resource_path(
            'test_image_dataset_diffdim2.py')
        train_dataset = import_python_file(train_dataset_path)
        train_assets = read_dataset(train_dataset)

        self.h5py_filepath = VmafConfig.workdir_path('test.hdf5')
        self.h5py_file = DisYUVRawVideoExtractor.open_h5py_file(
            self.h5py_filepath)
        optional_dict2 = {'h5py_file': self.h5py_file}

        runner = DisYUVRawVideoExtractor(
            train_assets,
            None,
            fifo_mode=True,
            delete_workdir=True,
            result_store=None,
            optional_dict=None,
            optional_dict2=optional_dict2,
        )
        runner.run(parallelize=False
                   )  # CAN ONLY USE SERIAL MODE FOR DisYRawVideoExtractor
        self.features = runner.results

        self.model_filename = VmafConfig.workspace_path(
            "model", "test_save_load.pkl")
Esempio n. 2
0
    def test_run_parallel_dis_y_fextractor(self):
        print 'test on running dis YUV raw video extractor in parallel (disabled)...'
        ref_path = VmafConfig.test_resource_path("yuv",
                                                 "src01_hrc00_576x324.yuv")
        dis_path = VmafConfig.test_resource_path("yuv",
                                                 "src01_hrc01_576x324.yuv")
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=1,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=2,
                               workdir_root=VmafConfig.workdir_path(),
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)
        optional_dict2 = {'h5py_file': h5py_file}

        fextractor = DisYUVRawVideoExtractor([asset, asset_original],
                                             None,
                                             fifo_mode=True,
                                             delete_workdir=True,
                                             result_store=None,
                                             optional_dict={'channels': 'yu'},
                                             optional_dict2=optional_dict2)
        self.fextractors = [fextractor]
        fextractor.run(parallelize=False
                       )  # Can't run parallel: can't pickle FileID objects
        results = fextractor.results

        self.assertAlmostEqual(np.mean(results[0]['dis_y']),
                               61.332006579182384,
                               places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_y']),
                                59.788567297525148,
                                places=4)
        self.assertAlmostEqual(np.mean(results[0]['dis_u']),
                               115.23227407335962,
                               places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_u']),
                                114.49701717535437,
                                places=4)

        with self.assertRaises(KeyError):
            np.mean(results[0]['dis_v'])

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)
Esempio n. 3
0
    def setUp(self):
        train_dataset_path = VmafConfig.test_resource_path("test_image_dataset_diffdim.py")
        train_dataset = import_python_file(train_dataset_path)
        train_assets = read_dataset(train_dataset)

        self.h5py_filepath = VmafConfig.workdir_path('test.hdf5')
        self.h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)
        optional_dict2 = {'h5py_file': self.h5py_file}

        fextractor = DisYUVRawVideoExtractor(
            train_assets,
            None,
            fifo_mode=True,
            delete_workdir=True,
            result_store=None,
            optional_dict=None,
            optional_dict2=optional_dict2,
        )
        fextractor.run(parallelize=False) # CAN ONLY USE SERIAL MODE FOR DisYRawVideoExtractor
        self.features = fextractor.results
Esempio n. 4
0
    def test_run_parallel_dis_y_fextractor(self):
        print 'test on running dis YUV raw video extractor in parallel (disabled)...'
        ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv")
        dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv")
        asset = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=2,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)
        optional_dict2 = {'h5py_file': h5py_file}

        fextractor = DisYUVRawVideoExtractor(
            [asset, asset_original],
            None,
            fifo_mode=True,
            delete_workdir=True,
            result_store=None,
            optional_dict={'channels': 'yu'},
            optional_dict2=optional_dict2
        )
        self.fextractors = [fextractor]
        fextractor.run(parallelize=False) # Can't run parallel: can't pickle FileID objects
        results = fextractor.results

        self.assertAlmostEqual(np.mean(results[0]['dis_y']), 61.332006579182384, places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_y']), 59.788567297525148, places=4)
        self.assertAlmostEqual(np.mean(results[0]['dis_u']), 115.23227407335962, places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_u']), 114.49701717535437, places=4)

        with self.assertRaises(KeyError):
            np.mean(results[0]['dis_v'])

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)
Esempio n. 5
0
class DisYUVRawVideoExtractorTest(unittest.TestCase):

    def setUp(self):
        self.h5py_filepath = VmafConfig.workdir_path('test.hdf5')

    def tearDown(self):
        if os.path.exists(self.h5py_filepath):
            os.remove(self.h5py_filepath)

    def test_run_dis_yuv_raw_video_extractor(self):
        print 'test on running dis YUV raw video extractor...'
        ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv")
        dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv")
        asset = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=2,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)

        self.fextractor = DisYUVRawVideoExtractor(
            [asset, asset_original], None, fifo_mode=False,
            optional_dict={'channels': 'yu'},
            optional_dict2={'h5py_file': h5py_file}
        )

        self.fextractor.run()

        results = self.fextractor.results

        self.assertAlmostEqual(np.mean(results[0]['dis_y']), 61.332006579182384, places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_y']), 59.788567297525148, places=4)
        self.assertAlmostEqual(np.mean(results[0]['dis_u']), 115.23227407335962, places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_u']), 114.49701717535437, places=4)

        with self.assertRaises(KeyError):
            np.mean(results[0]['dis_v'])

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)

    def test_run_dis_yuv_raw_video_extractor_parallel(self):
        print 'test on running dis YUV raw video extractor...'
        ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv")
        dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv")
        asset = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=2,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)

        self.fextractor = DisYUVRawVideoExtractor(
            [asset, asset_original], None, fifo_mode=False,
            optional_dict={'channels': 'yu'},
            optional_dict2={'h5py_file': h5py_file}
        )

        with self.assertRaises(AssertionError):
            self.fextractor.run(parallelize=True)

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)
Esempio n. 6
0
class DisYUVRawVideoExtractorTest(unittest.TestCase):

    def setUp(self):
        self.h5py_filepath = VmafConfig.workdir_path('test.hdf5')

    def tearDown(self):
        if os.path.exists(self.h5py_filepath):
            os.remove(self.h5py_filepath)

    def test_run_dis_yuv_raw_video_extractor(self):
        print 'test on running dis YUV raw video extractor...'
        ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv")
        dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv")
        asset = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=2,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)

        self.fextractor = DisYUVRawVideoExtractor(
            [asset, asset_original], None, fifo_mode=False,
            optional_dict={'channels': 'yu'},
            optional_dict2={'h5py_file': h5py_file}
        )

        self.fextractor.run()

        results = self.fextractor.results

        self.assertAlmostEqual(np.mean(results[0]['dis_y']), 61.332006579182384, places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_y']), 59.788567297525148, places=4)
        self.assertAlmostEqual(np.mean(results[0]['dis_u']), 115.23227407335962, places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_u']), 114.49701717535437, places=4)

        with self.assertRaises(KeyError):
            np.mean(results[0]['dis_v'])

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)

    def test_run_dis_yuv_raw_video_extractor_parallel(self):
        print 'test on running dis YUV raw video extractor...'
        ref_path = VmafConfig.test_resource_path("yuv", "src01_hrc00_576x324.yuv")
        dis_path = VmafConfig.test_resource_path("yuv", "src01_hrc01_576x324.yuv")
        asset = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=2,
                      workdir_root=VmafConfig.workdir_path(),
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)

        self.fextractor = DisYUVRawVideoExtractor(
            [asset, asset_original], None, fifo_mode=False,
            optional_dict={'channels': 'yu'},
            optional_dict2={'h5py_file': h5py_file}
        )

        with self.assertRaises(AssertionError):
            self.fextractor.run(parallelize=True)

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)