def __init__(self, modelname="", window_size=HYPERPARAMETERS["WINDOW_SIZE"], vocab_size=vocabulary.wordmap().len, embedding_size=HYPERPARAMETERS["EMBEDDING_SIZE"], hidden_size=HYPERPARAMETERS["HIDDEN_SIZE"], seed=miscglobals.RANDOMSEED, initial_embeddings=None, two_hidden_layers=HYPERPARAMETERS["TWO_HIDDEN_LAYERS"]): self.modelname = modelname self.parameters = Parameters(window_size, vocab_size, embedding_size, hidden_size, seed, initial_embeddings, two_hidden_layers) if LBL: graph.output_weights = self.parameters.output_weights graph.output_biases = self.parameters.output_biases graph.score_biases = self.parameters.score_biases else: graph.hidden_weights = self.parameters.hidden_weights graph.hidden_biases = self.parameters.hidden_biases if self.parameters.two_hidden_layers: graph.hidden2_weights = self.parameters.hidden2_weights graph.hidden2_biases = self.parameters.hidden2_biases graph.output_weights = self.parameters.output_weights graph.output_biases = self.parameters.output_biases # (self.graph_train, self.graph_predict, self.graph_verbose_predict) = graph.functions(self.parameters) import sets self.train_loss = MovingAverage() self.train_err = MovingAverage() self.train_lossnonzero = MovingAverage() self.train_squashloss = MovingAverage() self.train_unpenalized_loss = MovingAverage() self.train_l1penalty = MovingAverage() self.train_unpenalized_lossnonzero = MovingAverage() self.train_correct_score = MovingAverage() self.train_noise_score = MovingAverage() self.train_cnt = 0
import sys if __name__ == "__main__": import common.hyperparameters, common.options HYPERPARAMETERS = common.hyperparameters.read("language-model") HYPERPARAMETERS, options, args, newkeystr = common.options.reparse(HYPERPARAMETERS) import hyperparameters from common.mydict import sort as dictsort from common.str import percent from vocabulary import wordmap, wordform, language from targetvocabulary import targetmap for w1 in wordmap().all: w1 = wordmap().id(w1) # Actually, should assert W2W SKIP TRANSLATIONS FROM UNKNOWN WORD assert HYPERPARAMETERS["W2W SKIP TRANSLATIONS TO UNKNOWN WORD"] if language(w1) is None: print >> sys.stderr, "Skipping %s" % `wordmap().str(w1)` continue if w1 not in targetmap(): print >> sys.stderr, "Skipping %s, not a source word in targetmap" % `wordmap().str(w1)` continue for l2 in targetmap()[w1]: totcnt = 0 for cnt, w2 in dictsort(targetmap()[w1][l2]): totcnt += cnt print wordmap().str(w1), l2, [(percent(cnt, totcnt), wordform(w2)) for cnt, w2 in dictsort(targetmap()[w1][l2])] print >> sys.stderr, "REVERSE MAP NOW"
import sys if __name__ == "__main__": import common.hyperparameters, common.options HYPERPARAMETERS = common.hyperparameters.read("language-model") HYPERPARAMETERS, options, args, newkeystr = common.options.reparse( HYPERPARAMETERS) import hyperparameters from common.mydict import sort as dictsort from common.str import percent from vocabulary import wordmap, wordform, language from targetvocabulary import targetmap for w1 in wordmap().all: w1 = wordmap().id(w1) # Actually, should assert W2W SKIP TRANSLATIONS FROM UNKNOWN WORD assert HYPERPARAMETERS["W2W SKIP TRANSLATIONS TO UNKNOWN WORD"] if language(w1) is None: print >> sys.stderr, "Skipping %s" % ` wordmap().str(w1) ` continue if w1 not in targetmap(): print >> sys.stderr, "Skipping %s, not a source word in targetmap" % ` wordmap( ).str(w1) ` continue for l2 in targetmap()[w1]: totcnt = 0 for cnt, w2 in dictsort(targetmap()[w1][l2]): totcnt += cnt print wordmap().str(w1), l2, [
#!/usr/bin/env python """ Dump the w2w vocaulary. """ if __name__ == "__main__": import common.hyperparameters, common.options HYPERPARAMETERS = common.hyperparameters.read("language-model") HYPERPARAMETERS, options, args, newkeystr = common.options.reparse( HYPERPARAMETERS) import hyperparameters from vocabulary import wordmap for w in wordmap().all: print w
#!/usr/bin/env python """ Dump the w2w vocaulary. """ if __name__ == "__main__": import common.hyperparameters, common.options HYPERPARAMETERS = common.hyperparameters.read("language-model") HYPERPARAMETERS, options, args, newkeystr = common.options.reparse(HYPERPARAMETERS) import hyperparameters from vocabulary import wordmap for w in wordmap().all: print w