Esempio n. 1
0
class MockScoreStep(Step):
    """A step that is mocking scoring of packages."""

    # Assign probability is used to "assign" a score to the package to simulate knowledge
    # coverage for packages resolved - 0.75 means ~75% of packages will have a score.
    CONFIGURATION_SCHEMA: Schema = Schema(
        {
            SchemaOptional("package_name"): SchemaAny(str, None),
            SchemaOptional("assign_probability"): float,
            SchemaRequired("multi_package_resolution"): bool,
        }
    )
    CONFIGURATION_DEFAULT: Dict[str, Any] = {
        "package_name": None,
        "assign_probability": 0.75,
        "multi_package_resolution": False,
    }

    _score_history = attr.ib(type=Dict[Tuple[str, str, str], float], factory=dict, init=False)

    @classmethod
    def should_include(cls, builder_context: "PipelineBuilderContext") -> Generator[Dict[str, Any], None, None]:
        """Register self, never."""
        yield from ()
        return None

    def pre_run(self) -> None:
        """Initialize self, before each run."""
        self._score_history.clear()
        super().pre_run()

    def post_run(self) -> None:
        """Print the generated history after the run."""
        packages = {}  # type: Dict[Any, Any]
        for key, value in self._score_history.items():
            packages.setdefault(key[0], []).append((key, value))

        for key, value in packages.items():
            packages[key] = sorted(value, key=operator.itemgetter(1), reverse=True)  # type: ignore

        print("-" * 10, " Mock score report ", "-" * 10, file=sys.stderr)
        for key in sorted(packages):
            print(key, file=sys.stderr)
            for entry in packages[key]:
                print(f"{str((entry[0][1], entry[0][2])):>50} | {entry[1]:+f}", file=sys.stderr)
        print("-" * 40, file=sys.stderr)

    def run(
        self, _: State, package_version: PackageVersion
    ) -> Optional[Tuple[Optional[float], Optional[List[Dict[str, str]]]]]:
        """Score the given package regardless of the state."""
        # Using seed set to process on the adviser run affects this call - so adviser
        # with same seed set shared scores generated across runs.
        score = self._score_history.setdefault(
            package_version.to_tuple(),
            random.uniform(self.SCORE_MIN, self.SCORE_MAX)
            if random.random() <= self.configuration["assign_probability"]
            else 0.0,
        )
        return score, None
Esempio n. 2
0
class AdviserTestCase:
    """A base class for implementing adviser's test cases."""

    data_dir = Path(os.path.dirname(os.path.realpath(__file__))) / "data"

    JUSTIFICATION_SAMPLE_1 = [
        {"message": "Justification sample 1", "type": "WARNING", "link": "https://thoth-station.ninja"},
        {"message": "Justification sample 1", "type": "INFO", "link": "https://thoth-station.ninja"},
        {"message": "Justification sample 1", "type": "ERROR", "link": "https://thoth-station.ninja"},
    ]

    JUSTIFICATION_SAMPLE_2 = [
        {
            "message": "Justification sample 2",
            "type": "INFO",
            "link": "https://thoth-station.ninja",
            "advisory": "Bark!",
        },
    ]

    JUSTIFICATION_SAMPLE_3 = [
        {
            "message": "Justification sample 2",
            "type": "INFO",
            "link": "https://thoth-station.ninja",
            "package_name": "tensorflow",
            "version_range": "<2.3>=",
        },
    ]

    _JUSTIFICATION_SCHEMA = Schema(
        [
            {
                "message": All(str, Length(min=1)),
                "type": SchemaAny("INFO", "WARNING", "ERROR", "LATEST", "CVE"),
                "link": All(str, Length(min=1)),
                SchemaOptional("advisory"): All(str, Length(min=1)),
                SchemaOptional("cve_id"): All(str, Length(min=1)),
                SchemaOptional("cve_name"): All(str, Length(min=1)),
                SchemaOptional("package_name"): All(str, Length(min=1)),
                SchemaOptional("version_range"): All(str, Length(min=1)),
            }
        ]
    )

    @classmethod
    def verify_justification_schema(cls, justification: Optional[List[Dict[str, Any]]]) -> bool:
        """Verify the justification schema is correct."""
        if justification is None:
            return True

        try:
            cls._JUSTIFICATION_SCHEMA(justification)
        except Invalid as exc:
            raise AdviserJustificationSchemaError(exc.msg) from exc
        else:
            return True
Esempio n. 3
0
class SetScoreStep(Step):
    """A step that is setting score for packages."""

    # Assign probability is used to "assign" a score to the package to simulate knowledge
    # coverage for packages resolved - 0.75 means ~75% of packages will have a score.
    CONFIGURATION_SCHEMA: Schema = Schema({
        Required("multi_package_resolution"):
        bool,
        Required("package_name"):
        str,
        SchemaOptional("index_url"):
        SchemaAny(str, None),
        SchemaOptional("package_version"):
        SchemaAny(str, None),
        SchemaOptional("score"):
        SchemaAny(float, None),
    })
    CONFIGURATION_DEFAULT: Dict[str, Any] = {
        "index_url": None,
        "multi_package_resolution": False,
        "package_name": None,
        "package_version": None,
        "score": None,
    }

    @classmethod
    def should_include(
            cls, builder_context: "PipelineBuilderContext"
    ) -> Optional[Dict[str, Any]]:
        """Register self, never."""
        return None

    def pre_run(self) -> None:
        """Initialize this pipeline unit before each run."""
        if self.configuration["score"] is None:
            self.configuration["score"] = random.uniform(
                self.SCORE_MIN, self.SCORE_MAX)

        super().pre_run()

    def run(
        self, _: State, package_version: PackageVersion
    ) -> Optional[Tuple[Optional[float], Optional[List[Dict[str, str]]]]]:
        """Score the given package."""
        if (self.configuration["package_version"] is not None
                and package_version.locked_version !=
                self.configuration["package_version"]) or (
                    self.configuration["index_url"] is not None
                    and package_version.index.url !=
                    self.configuration["index_url"]):
            return None

        return self.configuration["score"], None
Esempio n. 4
0
class Sieve2(Sieve):
    """A testing sieve implementation."""

    CONFIGURATION_DEFAULT = {"date": "2015-09-15", "package_name": "selinon"}
    CONFIGURATION_SCHEMA: Schema = Schema(
        {Required("package_name"): str, Required("date"): str, SchemaOptional("foo"): str}
    )

    @classmethod
    def should_include(cls, builder_context: "PipelineBuilderContext") -> Generator[Dict[str, Any], None, None]:
        """Check if this pipeline unit should be included in the pipeline configuration."""
        yield from ()
        return None

    def run(self, package_versions: Generator[PackageVersion, None, None]) -> Generator[PackageVersion, None, None]:
        """Run noop method."""
        return package_versions
Esempio n. 5
0
class MemTraceBoot(Boot):
    """A boot that traces memory consumption of the adviser/dependency-monkey run."""

    CONFIGURATION_DEFAULT = {
        "frame_count": 100,  # Number of frames traced.
        "top_limit": 100,  # Number of top mem usage consumers printed.
    }
    CONFIGURATION_SCHEMA = Schema({
        SchemaOptional("frame_count"): int,
    })

    @classmethod
    def should_include(
        cls, builder_context: "PipelineBuilderContext"
    ) -> Generator[Dict[str, Any], None, None]:
        """Register self, never."""
        # Uncomment this to release the beast.
        # if not builder_context.is_included(cls):
        #     yield {}
        #     return None
        yield from ()
        return None

    def pre_run(self) -> None:
        """Initialize memory tracing."""
        _LOGGER.warning(
            "Enabling memory tracing, this has negative impact on the overall pipeline performance"
        )
        tracemalloc.start(self.configuration["frame_count"])
        super().pre_run()

    @staticmethod
    def _display_top(snapshot: tracemalloc.Snapshot,
                     *,
                     key_type: str = "lineno",
                     limit: int = 10) -> None:
        """Print top consumers.

        Inspired by Python docs:
          https://docs.python.org/3/library/tracemalloc.html#get-the-traceback-of-a-memory-block
        """
        snapshot = snapshot.filter_traces((
            tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
            tracemalloc.Filter(False, "<unknown>"),
        ))
        top_stats = snapshot.statistics(key_type)

        print("Top %s lines" % limit)
        for index, stat in enumerate(top_stats[:limit], 1):
            frame = stat.traceback[0]
            print("#%s: %s:%s: %.1f KiB" %
                  (index, frame.filename, frame.lineno, stat.size / 1024))
            line = linecache.getline(frame.filename, frame.lineno).strip()
            if line:
                print("    %s" % line)

        other = top_stats[limit:]
        if other:
            size = sum(stat.size for stat in other)
            print("%s other: %.1f KiB" % (len(other), size / 1024))
        total = sum(stat.size for stat in top_stats)
        print("Total allocated size: %.1f KiB" % (total / 1024))

    def post_run(self) -> None:
        """De-initialize memory tracing and print the stats."""
        _LOGGER.warning(
            "Turning memory consumption tracing off and aggregating statistics; this might take a while..."
        )
        snapshot = tracemalloc.take_snapshot()
        self._display_top(snapshot, limit=self.configuration["top_limit"])
        tracemalloc.stop()

    def run(self) -> None:
        """Do not perform anything valuable in the actual implementation."""
Esempio n. 6
0
class GenerateScoreStep(Step):
    """A step that is assigning scores in a deterministic way.

    This unit can be used to measure assigning score in a deterministic way across multiple runs without
    a need to store all the score for packages.
    """

    # Assign probability is used to "assign" a score to the package to simulate knowledge
    # coverage for packages resolved - 0.75 means ~75% of packages will have a score.
    CONFIGURATION_SCHEMA: Schema = Schema({
        SchemaOptional("assign_probability"):
        float,
        SchemaOptional("buffer_size"):
        int,
        SchemaOptional("package_name"):
        SchemaAny(str, None),
        SchemaOptional("seed"):
        int,
        SchemaRequired("multi_package_resolution"):
        bool,
    })
    CONFIGURATION_DEFAULT: Dict[str, Any] = {
        "assign_probability": 0.75,
        "buffer_size": 1024,
        "multi_package_resolution": False,
        "package_name": None,
        "seed": 42,
    }

    _history = attr.ib(type=Dict[Tuple[str, str, str], float],
                       factory=dict,
                       init=False)
    _buffer = attr.ib(type=List[float], factory=list, init=False)
    _idx = attr.ib(type=int, default=0, init=False)

    def pre_run(self) -> None:
        """Initialize this pipeline units before each run."""
        self._history.clear()
        self._idx = 0

        if not self._buffer:
            state = random.getstate()
            random.seed(self.configuration["seed"])
            self._buffer = [0.0] * self.configuration["buffer_size"]
            for i in range(self.configuration["buffer_size"]):
                self._buffer[i] = (
                    random.uniform(self.SCORE_MIN, self.SCORE_MAX) if
                    random.random() <= self.configuration["assign_probability"]
                    else 0.0)
            random.setstate(state)

        super().pre_run()

    def post_run(self) -> None:
        """Print the generated scores on finish to stdout."""
        pprint(self._history)

    @classmethod
    def should_include(
        cls, builder_context: "PipelineBuilderContext"
    ) -> Generator[Dict[str, Any], None, None]:
        """Register self, never."""
        yield from ()
        return None

    def run(
        self, _: State, package_version: PackageVersion
    ) -> Optional[Tuple[Optional[float], Optional[List[Dict[str, str]]]]]:
        """Score the given package."""
        package_tuple = package_version.to_tuple()
        score = self._history.get(package_tuple)

        if score is not None:
            return score, None

        idx = self._idx
        self._idx = (self._idx + 1) % self.configuration["buffer_size"]
        self._history[package_tuple] = self._buffer[idx]
        return self._buffer[idx], None