Esempio n. 1
0
def train():
    model_config = ModelConfig()
    training_config = TrainConfig()
    model_config.batch_size = 32

    # Get model
    model_fn = get_model_creation_fn(FLAGS.model_type)

    # Create training directory.
    train_dir = FLAGS.train_dir % (FLAGS.model_type, model_config.feat_type)
    if not tf.gfile.IsDirectory(train_dir):
        tf.logging.info("Creating training directory: %s", train_dir)
        tf.gfile.MakeDirs(train_dir)

    g = tf.Graph()
    with g.as_default():
        # Build the model.
        model = model_fn(model_config, 'train')
        model.build()

        # Set up the learning rate.u
        learning_rate = tf.constant(training_config.initial_learning_rate)

        def _learning_rate_decay_fn(learn_rate, global_step):
            return tf.train.exponential_decay(
                learn_rate,
                global_step,
                decay_steps=training_config.decay_step,
                decay_rate=training_config.decay_factor)

        learning_rate_decay_fn = _learning_rate_decay_fn

        train_op = tf.contrib.layers.optimize_loss(
            loss=model.loss,
            global_step=model.global_step,
            learning_rate=learning_rate,
            optimizer=training_config.optimizer,
            clip_gradients=training_config.clip_gradients,
            learning_rate_decay_fn=learning_rate_decay_fn)

        # Set up the Saver for saving and restoring model checkpoints.
        saver = tf.train.Saver(
            max_to_keep=training_config.max_checkpoints_to_keep)

    # create reader
    reader = AttentionDataReader(batch_size=model_config.batch_size,
                                 subset='trainval',
                                 feat_type=model_config.feat_type)

    # Run training.
    training_util.train(train_op,
                        train_dir,
                        log_every_n_steps=FLAGS.log_every_n_steps,
                        graph=g,
                        global_step=model.global_step,
                        number_of_steps=FLAGS.number_of_steps,
                        init_fn=model.init_fn,
                        saver=saver,
                        reader=reader,
                        feed_fn=model.fill_feed_dict)
Esempio n. 2
0
def train():
    model_config = ModelConfig()
    model_config.input_file_pattern = FLAGS.input_file_pattern
    training_config = TrainConfig()

    # Get model
    model_fn = get_model_creation_fn(FLAGS.model_type)

    # Create training directory.
    train_dir = FLAGS.train_dir % FLAGS.model_type
    if not tf.gfile.IsDirectory(train_dir):
        tf.logging.info("Creating training directory: %s", train_dir)
        tf.gfile.MakeDirs(train_dir)

    g = tf.Graph()
    with g.as_default():
        # Build the model.
        model = model_fn(model_config, 'train')
        model.build()

        # Set up the learning rate.
        learning_rate = tf.constant(training_config.initial_learning_rate)

        def _learning_rate_decay_fn(learn_rate, global_step):
            return tf.train.exponential_decay(
                learn_rate,
                global_step,
                decay_steps=3,
                decay_rate=training_config.decay_factor)

        learning_rate_decay_fn = _learning_rate_decay_fn

        # Set up gradient clipping function
        # def _clip_gradient_by_value(gvs):
        #     return [(tf.clip_by_value(grad, -training_config.clip_gradients,
        #                               training_config.clip_gradients), var) for grad, var in gvs]
        # grad_proc_fn = _clip_gradient_by_value

        # Set up the training ops.
        train_op = tf.contrib.layers.optimize_loss(
            loss=model.loss,
            global_step=model.global_step,
            learning_rate=learning_rate,
            optimizer=training_config.optimizer,
            clip_gradients=training_config.clip_gradients,
            learning_rate_decay_fn=learning_rate_decay_fn)

        # Set up the Saver for saving and restoring model checkpoints.
        saver = tf.train.Saver(
            max_to_keep=training_config.max_checkpoints_to_keep)

    # Run training.
    tf.contrib.slim.learning.train(train_op,
                                   train_dir,
                                   log_every_n_steps=FLAGS.log_every_n_steps,
                                   graph=g,
                                   global_step=model.global_step,
                                   number_of_steps=FLAGS.number_of_steps,
                                   init_fn=model.init_fn,
                                   saver=saver)
def vaq_multiple_choices(checkpoint_path=None, subset='kpval'):
    # subset = 'kptest'
    need_attr = True
    need_im_feat = False
    use_answer_type = False
    # feat_type = 'semantic'
    feat_type = 'res152'

    model_config = ModelConfig()
    model_config.cell_option = 4

    # Get model
    print(FLAGS.model_type)
    model_fn = get_model_creation_fn(FLAGS.model_type)
    mc_ctx = MultipleChoiceEvaluater(subset='val',
                                     need_im_feat=need_im_feat,
                                     need_attr=need_attr,
                                     feat_type=feat_type,
                                     use_ans_type=use_answer_type)

    if checkpoint_path is None:
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir % FLAGS.model_type)
        checkpoint_path = ckpt.model_checkpoint_path

    g = tf.Graph()
    with g.as_default():
        # Build the model.
        model = model_fn(model_config, phase='condition')
        model.build()
        losses = model.losses
        saver = tf.train.Saver()

        sess = tf.Session()
        tf.logging.info('Restore from model %s' % os.path.basename(checkpoint_path))
        saver.restore(sess, checkpoint_path)

    num_batches = mc_ctx.num_samples

    print('Running multiple choices...')
    predictions, answer_ids = [], []
    for i in range(num_batches):
        if i % 1000 == 0:
            print('Running multiple choices: %d/%d' % (i, num_batches))
        outputs = mc_ctx.get_task_data()
        feed_dict = model.fill_feed_dict(outputs[:-2])
        np_losses = sess.run(losses, feed_dict=feed_dict)
        scores = -np_losses.sum(axis=1)[np.newaxis, :]
        predictions.append(scores)
        answer_ids.append(outputs[-2])
    predictions = np.concatenate(predictions, axis=0)
    answer_ids = np.array(answer_ids)

    # evaluate
    mc_ctx.evaluate_results(answer_ids, predictions,
                            model_type=FLAGS.model_type)
def test(checkpoint_path=None):
    batch_size = 1
    config = ModelConfig()
    # Get model function
    model_fn = get_model_creation_fn(FLAGS.model_type)

    # build data reader
    reader = AttentionFetcher(batch_size=batch_size, subset=TEST_SET)
    if checkpoint_path is None:
        ckpt = tf.train.get_checkpoint_state(
            FLAGS.checkpoint_dir % (FLAGS.model_type, config.feat_type))
        checkpoint_path = ckpt.model_checkpoint_path
    print(checkpoint_path)

    # build and restore model
    model = model_fn(config, phase='test')
    model.build()
    g_prob = model.prob
    g_att_map = model.attention_map
    # sess = tf.Session()
    sess = tf.Session(graph=tf.get_default_graph())
    tf.logging.info('Restore from model %s' %
                    os.path.basename(checkpoint_path))
    saver = tf.train.Saver()
    saver.restore(sess, checkpoint_path)

    # Create the vocabulary.
    visualiser = PredictionVisualiser(FLAGS.model_type, do_plot=True)

    ans_ids = []
    quest_ids = []
    print('Running inference on split %s...' % TEST_SET)
    for i in range(reader.num_batches):
        if i % 100 == 0:
            update_progress(i / float(reader.num_batches))
        outputs = reader.get_test_batch()
        if i < 100:
            continue
        generated_ans, att_map = sess.run([g_prob, g_att_map],
                                          feed_dict=model.fill_feed_dict(
                                              outputs[:-2]))
        # process attention map
        att_map = att_map.reshape([batch_size, 14, 14, -1])
        att_map = np.transpose(att_map, [0, 3, 1, 2])
        generated_ans[:, -1] = 0
        top_ans = np.argmax(generated_ans, axis=1)
        gt_ans = outputs[3]

        ans_ids.append(top_ans)
        quest_id = outputs[-2]
        quest_ids.append(quest_id)

        if np.random.rand() > 0.05:
            visualiser.plot(quest_id, generated_ans, att_map)
Esempio n. 5
0
def vaq_condition(checkpoint_path=None):
    subset = 'dev'
    model_config = ModelConfig()

    # Get model
    model_fn = get_model_creation_fn(FLAGS.model_type)

    # build data reader
    reader = Reader(batch_size=1, subset=subset, output_attr=True, output_im=False,
                    output_qa=True, output_capt=False)

    if checkpoint_path is None:
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir % FLAGS.model_type)
        checkpoint_path = ckpt.model_checkpoint_path

    g = tf.Graph()
    with g.as_default():
        # Build the model.
        model = model_fn(model_config, 'condition')
        model.build()
        saver = tf.train.Saver()

        sess = tf.Session()
        tf.logging.info('Restore from model %s' % os.path.basename(checkpoint_path))
        saver.restore(sess, checkpoint_path)

    fetch_op = model.losses
    num_batches = reader.num_batches

    save_file = 'data/%s_vaq_cond_score1000-2000_%s.hdf5' % ((FLAGS.model_type).lower(), subset)
    print('Save File: %s' % save_file)
    print('Running conditioning...')
    nlls, quest_ids = [], []
    for i in range(num_batches):
        update_progress(i / float(num_batches))

        outputs = reader.get_test_batch()
        im_feed, quest, _, ans_feed, quest_id, image_id = outputs

        losses = sess.run(fetch_op, feed_dict=model.fill_feed_dict(outputs[:-2]))
        scores = losses[:, :-1].mean(axis=1)
        scores = scores[np.newaxis, ::]
        nlls.append(scores)
        quest_ids.append(quest_id)

    nlls = np.concatenate(nlls, axis=0)
    quest_ids = np.concatenate(quest_ids, axis=0)
    print('\nSaving result files: %s...' % save_file)
    save_hdf5(save_file, {'nll': nlls, 'quest_ids': quest_ids})
Esempio n. 6
0
 def build_model(self, model_config):
     model_creator = get_model_creation_fn(model_config.model_type)
     model = model_creator(model_config, phase=model_config.phase)
     model.build()
     return model
Esempio n. 7
0
def vaq_condition(checkpoint_path=None):
    subset = 'kpval'
    model_config = ModelConfig()
    model_config.cell_option = 4

    # Get model
    model_fn = get_model_creation_fn(FLAGS.model_type)

    # build data reader
    reader = Reader(batch_size=1, subset=subset, output_attr=True, output_im=True,
                    output_qa=True, output_capt=False, output_ans_seq=False)
    ans_prop_ctx = AnswerProposals(top_k=5)

    if checkpoint_path is None:
        ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir % FLAGS.model_type)
        checkpoint_path = ckpt.model_checkpoint_path

    g = tf.Graph()
    with g.as_default():
        # Build the model.
        model = model_fn(model_config, 'evaluate')
        model.build()
        saver = tf.train.Saver()

        sess = tf.Session()
        tf.logging.info('Restore from model %s' % os.path.basename(checkpoint_path))
        saver.restore(sess, checkpoint_path)

    fetch_op = model.losses
    num_batches = reader.num_batches

    save_file = 'data/%s_vqa_vaq_rerank_%s.hdf5' % ((FLAGS.model_type).lower(), subset)
    print('Save File: %s' % save_file)
    print('Running conditioning...')
    vaq_scores, quest_ids = [], []
    vqa_scores, vqa_pred_labels = [], []
    for i in range(num_batches):
        update_progress(i / float(num_batches))

        outputs = reader.get_test_batch()
        im_feed, attr_feed, quest, _, _, quest_id, image_id = outputs
        quest_id = int(quest_id)
        outputs, vqa_score, answer_ids = pre_process_input_data(outputs, ans_prop_ctx)

        losses = sess.run(fetch_op, feed_dict=model.fill_feed_dict(outputs))
        vaq_score = losses[:, :-1].mean(axis=1)
        vaq_score = vaq_score[np.newaxis, ::]
        vaq_scores.append(vaq_score)
        quest_ids.append(quest_id)
        vqa_scores.append(vqa_score[np.newaxis, :])
        vqa_pred_labels.append(answer_ids[np.newaxis, :])

    vaq_scores = np.concatenate(vaq_scores, axis=0)
    vqa_scores = np.concatenate(vqa_scores, axis=0)
    vqa_pred_labels = np.concatenate(vqa_pred_labels, axis=0)
    quest_ids = np.array(quest_ids, dtype=np.int32)
    print('\nSaving result files: %s...' % save_file)
    save_hdf5(save_file, {'vaq_scores': vaq_scores,
                          'vqa_scores': vqa_scores,
                          'vqa_pred_labels': vqa_pred_labels,
                          'quest_ids': quest_ids})