def _gen(a): N=int(vsip.getlength(a)) npm=N/2 c=pi/float(N) vsip.put(a,0,(float(N) - 1.0)/2.0) indx=0; if N % 2: for i in range(npm): indx = i+1 x = c * float(i) + c x = -0.5j * ccos(x)/ssin(x) - 0.5 vsip.put(a,indx,x) for i in range(npm,0,-1): indx +=1 x=vsip.get(a,i) x.i=-x.i vsip.put(a,indx,x) else: npm -= 1 for i in range(npm): indx = i+1 x = c * float(i) + c x = -0.5j * ccos(x)/ssin(x) - 0.5 vsip.put(a,indx,x) x=-0.5 indx +=1 vsip.put(a,indx,x) for i in range(npm,0,-1): indx +=1 x=vsip.get(a,i) x.i=-x.i vsip.put(a,indx,x)
def _gen(a): N = int(vsip.getlength(a)) npm = N / 2 c = pi / float(N) vsip.put(a, 0, (float(N) - 1.0) / 2.0) indx = 0 if N % 2: for i in range(npm): indx = i + 1 x = c * float(i) + c x = -0.5j * ccos(x) / ssin(x) - 0.5 vsip.put(a, indx, x) for i in range(npm, 0, -1): indx += 1 x = vsip.get(a, i) x.i = -x.i vsip.put(a, indx, x) else: npm -= 1 for i in range(npm): indx = i + 1 x = c * float(i) + c x = -0.5j * ccos(x) / ssin(x) - 0.5 vsip.put(a, indx, x) x = -0.5 indx += 1 vsip.put(a, indx, x) for i in range(npm, 0, -1): indx += 1 x = vsip.get(a, i) x.i = -x.i vsip.put(a, indx, x)
def mprint(m, fmt): """ This function will print a VSIPL matrix or vector suitable for pasting into Octave or Matlab. usage: mprint(<vsip matrix/vector>, fmt) fmt is a string corresponding to a simple fmt statement. For instance '%6.5f' prints as 6 characters wide with 5 decimal digits. Note format converts this statement to '% 6.5f' or '%+6.5f' so keep the input simple. """ def _fmt1(c): if c != '%': return c else: return '% ' def _fmt2(c): if c != '%': return c else: return '%+' def _fmtfunc(fmt1, fmt2, y): x = vsip.cscalarToComplex(y) if type(x) == complex: return fmt1 % x.real + fmt2 % x.imag + "i" else: return fmt % x tm = [ 'mview_d', 'mview_f', 'cmview_d', 'cmview_f', 'mview_i', 'mview_uc', 'mview_si', 'mview_bl' ] tv = [ 'vview_d', 'vview_f', 'cvview_d', 'cvview_f', 'vview_i', 'vview_uc', 'vview_si', 'vview_bl', 'vview_vi', 'vview_mi' ] t = vsip.getType(m)[1] tfmt = [_fmt1(c) for c in fmt] fmt1 = "".join(tfmt) tfmt = [_fmt2(c) for c in fmt] fmt2 = "".join(tfmt) if t in tm: cl = vsip.getcollength(m) rl = vsip.getrowlength(m) for i in range(cl): M = [] for j in range(rl): M.append(_fmtfunc(fmt1, fmt2, vsip.get(m, (i, j)))) if i == 0: print("[" + " ".join(M) + ";") elif i < cl - 1: print(" " + " ".join(M) + ";") else: print(" " + " ".join(M) + "]") elif t in tv: l = vsip.getlength(m) V = [_fmtfunc(fmt1, fmt2, vsip.get(m, i)) for i in range(l)] print("[" + " ".join(V) + "]") else: print('Object not VSIP vector or matrix')
def mstring(m,fmt): """ This function will print a VSIPL matrix or vector suitable for pasting into Octave or Matlab. usage: mprint(<vsip matrix/vector>, fmt) fmt is a string corresponding to a simple fmt statement. For instance '%6.5f' prints as 6 characters wide with 5 decimal digits. Note format converts this statement to '% 6.5f' or '%+6.5f' so keep the input simple. """ def _fmt1(c): if c != '%': return c else: return '% ' def _fmt2(c): if c != '%': return c else: return '%+' def _fmtfunc(fmt1,fmt2,y): x = vsip.cscalarToComplex(y) if type(x) == complex: s = fmt1 % x.real s += fmt2 % x.imag s += "i" return s else: return fmt1 % x tm=['mview_d','mview_f','cmview_d','cmview_f','mview_i','mview_uc','mview_si','mview_bl'] tv=['vview_d','vview_f','cvview_d','cvview_f','vview_i','vview_uc','vview_si','vview_bl','vview_vi','vview_mi'] t=vsip.getType(m)[1] tfmt=[_fmt1(c) for c in fmt] fmt1 = "".join(tfmt) tfmt=[_fmt2(c) for c in fmt] fmt2 = "".join(tfmt) if t in tm: cl=vsip.getcollength(m) rl=vsip.getrowlength(m) s=str() for i in range(cl): M=[] for j in range(rl): M.append(_fmtfunc(fmt1,fmt2,vsip.get(m,(i,j)))) if i == 0: s += "["+" ".join(M) + ";\n" elif i < cl-1: s += " "+" ".join(M) + ";\n" else: s += " "+" ".join(M) + "]\n" return s elif t in tv: l=vsip.getlength(m) V=[_fmtfunc(fmt1,fmt2,vsip.get(m,i)) for i in range(l)] return "[" + " ".join(V) + "]\n" else: print('Object not VSIP vector or matrix')
def mToA(m): M=vsip.getcollength(m) N=vsip.getrowlength(m) a=np.empty((M,N),float,'C') for i in range(M): for j in range(N): a[i,j] = vsip.get(m,(i,j)) return a
def clud(p): def cmplx(p, re, im): return eval('vsip_cmplx' + p + '(re,im)') def csub(p, a, b): return eval('vsip_csub' + p + '(a,b)') def cmag(p, a): return eval('vsip_cmag' + p + '(a)') """ Usage is clud(p) where p is a string of either '_d' or '_f' to denote precision. only works for complex data. """ print('********\nTEST clud' + p + '\n') block = vsip.create('cblock' + p, (600, vsip.VSIP_MEM_NONE)) AC = vsip.bind(block, (0, 7, 7, 1, 7)) AG = vsip.bind(block, (175, -2, 7, -18, 7)) IC = vsip.bind(block, (176, 1, 7, 7, 7)) IG = vsip.bind(block, (226, 2, 7, 15, 7)) B = vsip.bind(block, (335, 7, 7, 1, 7)) A = vsip.bind(block, (385, 7, 7, 1, 7)) X = vsip.bind(block, (434, 5, 7, 1, 3)) Y = vsip.bind(block, (475, 3, 7, 1, 3)) ludC = vsip.create('clu' + p, 7) ludG = vsip.create('clu' + p, 7) data_r = [ \ [0.5, 7.0, 10.0, 12.0, -3.0, 0.0, 0.05], \ [2.0, 13.0, 18.0, 6.0, 0.0, 130.0, 8.0], \ [3.0, -9.0, 2.0, 3.0, 2.0, -9.0, 6.0], \ [4.0, 2.0, 2.0, 4.0, 1.0, 2.0, 3.0], \ [0.2, 2.0, 9.0, 4.0, 1.0, 2.0, 3.0], \ [0.1, 2.0, 0.3, 4.0, 1.0, 2.0, 3.0], \ [0.0, 0.2, 3.0, 4.0, 1.0, 2.0, 3.0]] data_i = [ [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], \ [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], \ [0.1, 0.1, 0.1, 0.2, 0.2,-0.2, 0.2], \ [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2], \ [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], \ [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4], \ [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]] ydata_r = [ \ [77.85, 155.70, 311.40], \ [942.00, 1884.00, 3768.00], \ [1.00, 2.00, 4.00], \ [68.00, 136.00, 272.00], \ [85.20, 170.40, 340.80], \ [59.00, 118.00, 236.00], \ [5.00, 18.00, 6.00]] ydata_i = [ \ [4.5, 1.70, -3.40], \ [3.7, 184.00, -2.00], \ [1.00, 3.00, 2.00], \ [68.00, 16.00, 272.00], \ [85.20, 1170.40, 340.80], \ [59.00, 18.50, 62.00], \ [59.00, 11.60, 26.00]] Ident = [ \ [1, 0, 0, 0, 0, 0, 0], \ [0, 1, 0, 0, 0, 0, 0], \ [0, 0, 1, 0, 0, 0, 0], \ [0, 0, 0, 1, 0, 0, 0], \ [0, 0, 0, 0, 1, 0, 0], \ [0, 0, 0, 0, 0, 1, 0], \ [0, 0, 0, 0, 0, 0, 1]] AH = vsip.create('cmview' + p, (7, 7, vsip.VSIP_ROW, vsip.VSIP_MEM_NONE)) for i in range(7): for j in range(7): a = cmplx(p, data_r[i][j], data_i[i][j]) e = cmplx(p, Ident[i][j], 0.0) vsip.put(A, (i, j), a) vsip.put(AC, (i, j), a) vsip.put(AG, (i, j), a) vsip.put(IC, (i, j), e) vsip.put(IG, (i, j), e) for i in range(7): for j in range(3): a = cmplx(p, ydata_r[i][j], ydata_i[i][j]) vsip.put(X, (i, j), a) vsip.herm(A, AH) print("Matrix A = \n") VU.mprint(A, '%7.2f') vsip.lud(ludC, AC) vsip.lud(ludG, AG) print("vsip_clusol(lud,vsip.VSIP_MAT_NTRANS,X)\n") print("Solve A X = I \n") vsip.lusol(ludC, vsip.VSIP_MAT_NTRANS, IC) vsip.lusol(ludG, vsip.VSIP_MAT_NTRANS, IG) print("for compact case X = \n") VU.mprint(IC, '%8.4f') print("for general case X = \n") VU.mprint(IG, '%8.4f') chk = 0 for i in range(7): for j in range(7): chk += cmag(p, csub(p, vsip.get(IC, (i, j)), vsip.get(IG, (i, j)))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(A, IC, B) chk = 0 for i in range(7): for j in range(7): chk += cmag( p, csub(p, vsip.get(B, (i, j)), cmplx(p, Ident[i][j], 0.0))) vsip.prod(A, IG, B) for i in range(7): for j in range(7): chk += cmag( p, csub(p, vsip.get(B, (i, j)), cmplx(p, Ident[i][j], 0.0))) print("mprod(A,X) = \n") VU.mprint(B, '%8.3f') if chk > .01: print("error\n") else: print("correct\n") # check case VSIP_MAT_HERM print("Matrix Hermitian A = \n") VU.mprint(AH, '%7.2f') for i in range(7): for j in range(7): vsip.put(IC, (i, j), cmplx(p, Ident[i][j], 0.0)) vsip.put(IG, (i, j), cmplx(p, Ident[i][j], 0.0)) print("vsip_clusol(lud,vsip.VSIP_MAT_HERM,X)\n") print("Solve herm(A) X = I \n") vsip.lusol(ludC, vsip.VSIP_MAT_HERM, IC) vsip.lusol(ludG, vsip.VSIP_MAT_HERM, IG) print("for compact case X = \n") VU.mprint(IC, '%8.4f') print("for general case X = \n") VU.mprint(IG, '%8.4f') chk = 0 for i in range(7): for j in range(7): chk += cmag(p, csub(p, vsip.get(IC, (i, j)), vsip.get(IG, (i, j)))) chk += cmag(p, csub(p, vsip.get(IC, (i, j)), vsip.get(IG, (i, j)))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(AH, IC, B) chk = 0 for i in range(7): for j in range(7): chk += cmag( p, csub(p, vsip.get(B, (i, j)), cmplx(p, Ident[i][j], 0.0))) vsip.prod(AH, IG, B) for i in range(7): for j in range(7): chk += cmag( p, csub(p, vsip.get(B, (i, j)), cmplx(p, Ident[i][j], 0.0))) print("mprod(trans(A),X) = \n") VU.mprint(B, '%8.3f') if chk > .01: print("error\n") else: print("correct\n") # check case A X = B for VSIP_MAT_NTRANS print("check A X = Y; VSIP_MAT_NTRANS\n") print("Y = \n") VU.mprint(X, "%8.4f") vsip.lusol(ludC, vsip.VSIP_MAT_NTRANS, X) print("X = \n") VU.mprint(X, "%8.4f") vsip.prod(A, X, Y) print(" Y = A X\n") VU.mprint(Y, "%8.4f") chk = 0 for i in range(7): for j in range(3): chk += cmag( p, csub(p, vsip.get(Y, (i, j)), cmplx(p, ydata_r[i][j], ydata_i[i][j]))) if (chk > .01): print("error\n") else: print("agree\n") for i in range(7): for j in range(3): vsip.put(X, (i, j), cmplx(p, ydata_r[i][j], ydata_i[i][j])) print("Y = \n") VU.mprint(X, '%8.4f') vsip.lusol(ludG, vsip.VSIP_MAT_HERM, X) vsip.prod(AH, X, Y) print("X = \n") VU.mprint(X, '%8.4f') print("Y = trans(A) X\n") VU.mprint(Y, '%8.4f') chk = 0 for i in range(7): for j in range(3): chk += cmag( p, csub(p, vsip.get(Y, (i, j)), cmplx(p, ydata_r[i][j], ydata_i[i][j]))) if (chk > .02): print("error\n") else: print("agree\n") vsip.destroy(AC) vsip.destroy(AG) vsip.destroy(IC) vsip.destroy(IG) vsip.destroy(B) vsip.destroy(A) vsip.destroy(X) vsip.destroy(Y) vsip.allDestroy(AH) vsip.destroy(ludC) vsip.destroy(ludG)
def lud(p): """ Usage is lud(p) where p is a string of either '_d' or '_f' to denote precision. only works for real data. """ print('********\nTEST lud' + p + '\n') block = vsip.create('block' + p, (500, vsip.VSIP_MEM_NONE)) AC = vsip.bind(block, (0, 6, 6, 1, 6)) AG = vsip.bind(block, (36, 2, 6, 18, 6)) IC = vsip.bind(block, (150, 1, 6, 6, 6)) IG = vsip.bind(block, (200, 2, 6, 14, 6)) B = vsip.bind(block, (300, 6, 6, 1, 6)) A = vsip.bind(block, (350, 6, 6, 1, 6)) X = vsip.bind(block, (400, 5, 6, 1, 3)) Y = vsip.bind(block, (450, 3, 6, 1, 3)) ludC = vsip.create('lu' + p, 6) ludG = vsip.create('lu' + p, 6) AT = vsip.transview(A) data = [[0.50, 7.00, 10.00, 12.00, -3.00, 0.00], [2.00, 13.00, 18.00, 6.00, 0.00, 130.00], [3.00, -9.00, 2.00, 3.00, 2.00, -9.00], [4.00, 2.00, 2.00, 4.00, 1.00, 2.00], [0.20, 2.00, 9.00, 4.00, 1.00, 2.00], [0.10, 2.00, 0.30, 4.00, 1.00, 2.00]] ydata = [[77.85, 155.70, 311.40], [942.00, 1884.00, 3768.00], [1.00, 2.00, 4.00], [68.00, 136.00, 272.00], [85.20, 170.40, 340.80], [59.00, 118.00, 236.00]] Ident = [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]] for i in range(6): for j in range(6): vsip.put(A, (i, j), data[i][j]) vsip.put(AC, (i, j), data[i][j]) vsip.put(AG, (i, j), data[i][j]) vsip.put(IC, (i, j), Ident[i][j]) vsip.put(IG, (i, j), Ident[i][j]) for i in range(6): for j in range(3): vsip.put(X, (i, j), ydata[i][j]) print("Matrix A = \n") VU.mprint(A, '%7.2f') vsip.lud(ludC, AC) vsip.lud(ludG, AG) print("vsip_lusol(lud,vsip.VSIP_MAT_NTRANS,X)\n") print("Solve A X = I \n") vsip.lusol(ludC, vsip.VSIP_MAT_NTRANS, IC) vsip.lusol(ludG, vsip.VSIP_MAT_NTRANS, IG) print("for compact case X = \n") VU.mprint(IC, '%8.4f') print("for general case X = \n") VU.mprint(IG, '%8.4f') chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(IC, (i, j)) - vsip.get(IG, (i, j))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(A, IC, B) chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(B, (i, j)) - Ident[i][j]) vsip.prod(A, IG, B) for i in range(6): for j in range(6): chk += abs(vsip.get(B, (i, j)) - Ident[i][j]) print("mprod(A,X) = \n") VU.mprint(B, '%8.3f') if chk > .01: print("error\n") else: print("correct\n") print("Matrix Transpose A = \n") VU.mprint(AT, '%7.2f') for i in range(6): for j in range(6): vsip.put(IC, (i, j), Ident[i][j]) vsip.put(IG, (i, j), Ident[i][j]) print("vsip_lusol(lud,vsip.VSIP_MAT_TRANS,X)\n") print("Solve trans(A) X = I \n") vsip.lusol(ludC, vsip.VSIP_MAT_TRANS, IC) vsip.lusol(ludG, vsip.VSIP_MAT_TRANS, IG) print("for compact case X = \n") VU.mprint(IC, '%8.4f') print("for general case X = \n") VU.mprint(IG, '%8.4f') chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(IC, (i, j)) - vsip.get(IG, (i, j))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(AT, IC, B) chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(B, (i, j)) - Ident[i][j]) vsip.prod(AT, IG, B) for i in range(6): for j in range(6): chk += abs(vsip.get(B, (i, j)) - Ident[i][j]) print("mprod(trans(A),X) = \n") VU.mprint(B, '%8.3f') if chk > .01: print("error\n") else: print("correct\n") print("check A X = Y; vsip.VSIP_MAT_NTRANS\n") print("Y = \n") VU.mprint(X, '%8.4f') vsip.lusol(ludC, vsip.VSIP_MAT_NTRANS, X) print("X = \n") VU.mprint(X, '%8.4f') vsip.prod(A, X, Y) print(" Y = A X\n") VU.mprint(Y, '%8.4f') chk = 0 for i in range(6): for j in range(3): chk += abs(vsip.get(Y, (i, j)) - ydata[i][j]) if chk > .01: print("error\n") else: print("agree\n") for i in range(6): for j in range(3): vsip.put(X, (i, j), ydata[i][j]) print("Y = \n") VU.mprint(X, '%8.4f') vsip.lusol(ludG, vsip.VSIP_MAT_TRANS, X) vsip.prod(AT, X, Y) print("X = \n") VU.mprint(X, '%8.4f') print("Y = trans(A) X\n") VU.mprint(Y, '%8.4f') chk = 0 for i in range(6): for j in range(3): chk += abs(vsip.get(Y, (i, j)) - ydata[i][j]) if (chk > .01): print("error\n") else: print("agree\n") vsip.destroy(AC) vsip.destroy(AG) vsip.destroy(IC) vsip.destroy(IG) vsip.destroy(B) vsip.destroy(A) vsip.destroy(X) vsip.destroy(Y) vsip.allDestroy(AT) vsip.destroy(ludC) vsip.destroy(ludG)
def clud(p): def cmplx(p,re,im): return eval('vsip_cmplx'+p+'(re,im)') def csub(p,a,b): return eval('vsip_csub'+p+'(a,b)') def cmag(p,a): return eval('vsip_cmag'+p+'(a)') """ Usage is clud(p) where p is a string of either '_d' or '_f' to denote precision. only works for complex data. """ print('********\nTEST clud'+p+'\n') block = vsip.create('cblock'+p,(600,vsip.VSIP_MEM_NONE)) AC = vsip.bind(block,(0,7,7,1,7)) AG = vsip.bind(block,(175,-2,7,-18,7)) IC = vsip.bind(block,(176,1,7,7,7)) IG = vsip.bind(block,(226,2,7,15,7)) B = vsip.bind(block,(335,7,7,1,7)) A = vsip.bind(block,(385,7,7,1,7)) X = vsip.bind(block,(434,5,7,1,3)) Y = vsip.bind(block,(475,3,7,1,3)) ludC = vsip.create('clu'+p,7) ludG = vsip.create('clu'+p,7) data_r = [ \ [0.5, 7.0, 10.0, 12.0, -3.0, 0.0, 0.05], \ [2.0, 13.0, 18.0, 6.0, 0.0, 130.0, 8.0], \ [3.0, -9.0, 2.0, 3.0, 2.0, -9.0, 6.0], \ [4.0, 2.0, 2.0, 4.0, 1.0, 2.0, 3.0], \ [0.2, 2.0, 9.0, 4.0, 1.0, 2.0, 3.0], \ [0.1, 2.0, 0.3, 4.0, 1.0, 2.0, 3.0], \ [0.0, 0.2, 3.0, 4.0, 1.0, 2.0, 3.0]]; data_i = [ [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], \ [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], \ [0.1, 0.1, 0.1, 0.2, 0.2,-0.2, 0.2], \ [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2], \ [0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], \ [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4], \ [0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4]]; ydata_r = [ \ [77.85, 155.70, 311.40], \ [942.00, 1884.00, 3768.00], \ [1.00, 2.00, 4.00], \ [68.00, 136.00, 272.00], \ [85.20, 170.40, 340.80], \ [59.00, 118.00, 236.00], \ [5.00, 18.00, 6.00]]; ydata_i = [ \ [4.5, 1.70, -3.40], \ [3.7, 184.00, -2.00], \ [1.00, 3.00, 2.00], \ [68.00, 16.00, 272.00], \ [85.20, 1170.40, 340.80], \ [59.00, 18.50, 62.00], \ [59.00, 11.60, 26.00]]; Ident = [ \ [1, 0, 0, 0, 0, 0, 0], \ [0, 1, 0, 0, 0, 0, 0], \ [0, 0, 1, 0, 0, 0, 0], \ [0, 0, 0, 1, 0, 0, 0], \ [0, 0, 0, 0, 1, 0, 0], \ [0, 0, 0, 0, 0, 1, 0], \ [0, 0, 0, 0, 0, 0, 1]]; AH = vsip.create('cmview'+p,(7,7,vsip.VSIP_ROW,vsip.VSIP_MEM_NONE)); for i in range(7): for j in range(7): a=cmplx(p,data_r[i][j],data_i[i][j]) e=cmplx(p,Ident[i][j],0.0) vsip.put(A, (i,j),a) vsip.put(AC,(i,j),a) vsip.put(AG,(i,j),a) vsip.put(IC,(i,j),e) vsip.put(IG,(i,j),e) for i in range(7): for j in range(3): a=cmplx(p,ydata_r[i][j],ydata_i[i][j]) vsip.put(X,(i,j),a) vsip.herm(A,AH) print("Matrix A = \n");VU.mprint(A,'%7.2f') vsip.lud(ludC,AC); vsip.lud(ludG,AG) print("vsip_clusol(lud,vsip.VSIP_MAT_NTRANS,X)\n") print("Solve A X = I \n") vsip.lusol(ludC,vsip.VSIP_MAT_NTRANS,IC) vsip.lusol(ludG,vsip.VSIP_MAT_NTRANS,IG) print("for compact case X = \n");VU.mprint(IC,'%8.4f') print("for general case X = \n");VU.mprint(IG,'%8.4f') chk = 0 for i in range(7): for j in range(7): chk += cmag(p,csub(p,vsip.get(IC,(i,j)),vsip.get(IG,(i,j)))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(A,IC,B) chk = 0 for i in range(7): for j in range(7): chk += cmag(p,csub(p,vsip.get(B,(i,j)),cmplx(p,Ident[i][j],0.0))) vsip.prod(A,IG,B) for i in range(7): for j in range(7): chk += cmag(p,csub(p,vsip.get(B,(i,j)),cmplx(p,Ident[i][j],0.0))) print("mprod(A,X) = \n"); VU.mprint(B,'%8.3f') if chk > .01: print("error\n") else: print("correct\n") # check case VSIP_MAT_HERM print("Matrix Hermitian A = \n");VU.mprint(AH,'%7.2f') for i in range(7): for j in range(7): vsip.put(IC,(i,j),cmplx(p,Ident[i][j],0.0)) vsip.put(IG,(i,j),cmplx(p,Ident[i][j],0.0)) print("vsip_clusol(lud,vsip.VSIP_MAT_HERM,X)\n") print("Solve herm(A) X = I \n") vsip.lusol(ludC,vsip.VSIP_MAT_HERM,IC) vsip.lusol(ludG,vsip.VSIP_MAT_HERM,IG) print("for compact case X = \n");VU.mprint(IC,'%8.4f') print("for general case X = \n");VU.mprint(IG,'%8.4f') chk = 0 for i in range(7): for j in range(7): chk += cmag(p,csub(p,vsip.get(IC,(i,j)),vsip.get(IG,(i,j)))) chk += cmag(p,csub(p,vsip.get(IC,(i,j)),vsip.get(IG,(i,j)))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(AH,IC,B) chk = 0 for i in range(7): for j in range(7): chk += cmag(p,csub(p,vsip.get(B,(i,j)),cmplx(p,Ident[i][j],0.0))) vsip.prod(AH,IG,B) for i in range(7): for j in range(7): chk += cmag(p,csub(p,vsip.get(B,(i,j)),cmplx(p,Ident[i][j],0.0))) print("mprod(trans(A),X) = \n"); VU.mprint(B,'%8.3f') if chk > .01: print("error\n") else: print("correct\n") # check case A X = B for VSIP_MAT_NTRANS print("check A X = Y; VSIP_MAT_NTRANS\n") print("Y = \n");VU.mprint(X,"%8.4f") vsip.lusol(ludC,vsip.VSIP_MAT_NTRANS,X) print("X = \n"); VU.mprint(X,"%8.4f") vsip.prod(A,X,Y) print(" Y = A X\n");VU.mprint(Y,"%8.4f") chk = 0; for i in range(7): for j in range(3): chk += cmag(p,csub(p,vsip.get(Y,(i,j)),cmplx(p,ydata_r[i][j],ydata_i[i][j]))) if (chk > .01): print("error\n") else: print("agree\n") for i in range(7): for j in range(3): vsip.put(X,(i,j),cmplx(p,ydata_r[i][j],ydata_i[i][j])) print("Y = \n");VU.mprint(X,'%8.4f') vsip.lusol(ludG,vsip.VSIP_MAT_HERM,X) vsip.prod(AH,X,Y) print("X = \n");VU.mprint(X,'%8.4f') print("Y = trans(A) X\n");VU.mprint(Y,'%8.4f') chk = 0 for i in range(7): for j in range(3): chk += cmag(p,csub(p,vsip.get(Y,(i,j)),cmplx(p,ydata_r[i][j],ydata_i[i][j]))) if (chk > .02): print("error\n") else: print("agree\n") vsip.destroy(AC) vsip.destroy(AG) vsip.destroy(IC) vsip.destroy(IG) vsip.destroy(B) vsip.destroy(A) vsip.destroy(X) vsip.destroy(Y) vsip.allDestroy(AH) vsip.destroy(ludC) vsip.destroy(ludG)
def lud(p): """ Usage is lud(p) where p is a string of either '_d' or '_f' to denote precision. only works for real data. """ print('********\nTEST lud'+p+'\n') block = vsip.create('block'+p,(500,vsip.VSIP_MEM_NONE)) AC = vsip.bind(block,(0,6,6,1,6)) AG = vsip.bind(block,(36,2,6,18,6)) IC = vsip.bind(block,(150,1,6,6,6)) IG = vsip.bind(block,(200,2,6,14,6)) B = vsip.bind(block,(300,6,6,1,6)) A = vsip.bind(block,(350,6,6,1,6)) X = vsip.bind(block,(400,5,6,1,3)) Y = vsip.bind(block,(450,3,6,1,3)) ludC = vsip.create('lu'+p,6) ludG = vsip.create('lu'+p,6) AT = vsip.transview(A) data= [ [0.50, 7.00, 10.00, 12.00, -3.00, 0.00], [2.00, 13.00, 18.00, 6.00, 0.00, 130.00], [3.00, -9.00, 2.00, 3.00, 2.00, -9.00], [4.00, 2.00, 2.00, 4.00, 1.00, 2.00], [0.20, 2.00, 9.00, 4.00, 1.00, 2.00], [0.10, 2.00, 0.30, 4.00, 1.00, 2.00]] ydata= [[ 77.85, 155.70, 311.40], [ 942.00, 1884.00, 3768.00], [ 1.00, 2.00, 4.00], [ 68.00, 136.00, 272.00], [ 85.20, 170.40, 340.80], [ 59.00, 118.00, 236.00]] Ident = [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]] for i in range(6): for j in range(6): vsip.put(A, (i,j),data[i][j]) vsip.put(AC,(i,j),data[i][j]) vsip.put(AG,(i,j),data[i][j]) vsip.put(IC,(i,j),Ident[i][j]) vsip.put(IG,(i,j),Ident[i][j]) for i in range(6): for j in range(3): vsip.put(X,(i,j),ydata[i][j]) print("Matrix A = \n");VU.mprint(A,'%7.2f') vsip.lud(ludC,AC); vsip.lud(ludG,AG) print("vsip_lusol(lud,vsip.VSIP_MAT_NTRANS,X)\n") print("Solve A X = I \n") vsip.lusol(ludC,vsip.VSIP_MAT_NTRANS,IC) vsip.lusol(ludG,vsip.VSIP_MAT_NTRANS,IG) print("for compact case X = \n");VU.mprint(IC,'%8.4f') print("for general case X = \n");VU.mprint(IG,'%8.4f') chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(IC,(i,j)) - vsip.get(IG,(i,j))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(A,IC,B) chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(B,(i,j)) - Ident[i][j]) vsip.prod(A,IG,B) for i in range(6): for j in range(6): chk += abs(vsip.get(B,(i,j)) - Ident[i][j]) print("mprod(A,X) = \n"); VU.mprint(B,'%8.3f') if chk > .01: print("error\n") else: print("correct\n") print("Matrix Transpose A = \n");VU.mprint(AT,'%7.2f') for i in range(6): for j in range(6): vsip.put(IC,(i,j),Ident[i][j]) vsip.put(IG,(i,j),Ident[i][j]) print("vsip_lusol(lud,vsip.VSIP_MAT_TRANS,X)\n") print("Solve trans(A) X = I \n") vsip.lusol(ludC,vsip.VSIP_MAT_TRANS,IC) vsip.lusol(ludG,vsip.VSIP_MAT_TRANS,IG) print("for compact case X = \n");VU.mprint(IC,'%8.4f') print("for general case X = \n");VU.mprint(IG,'%8.4f') chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(IC,(i,j)) - vsip.get(IG,(i,j))) if chk > .01: print("error\n") else: print("agree\n") vsip.prod(AT,IC,B) chk = 0 for i in range(6): for j in range(6): chk += abs(vsip.get(B,(i,j)) - Ident[i][j]) vsip.prod(AT,IG,B) for i in range(6): for j in range(6): chk += abs(vsip.get(B,(i,j)) - Ident[i][j]) print("mprod(trans(A),X) = \n"); VU.mprint(B,'%8.3f') if chk > .01: print("error\n") else: print("correct\n") print("check A X = Y; vsip.VSIP_MAT_NTRANS\n") print("Y = \n");VU.mprint(X,'%8.4f') vsip.lusol(ludC,vsip.VSIP_MAT_NTRANS,X) print("X = \n"); VU.mprint(X,'%8.4f') vsip.prod(A,X,Y) print(" Y = A X\n");VU.mprint(Y,'%8.4f') chk = 0 for i in range(6): for j in range(3): chk += abs(vsip.get(Y,(i,j)) - ydata[i][j]) if chk > .01: print("error\n") else : print("agree\n") for i in range(6): for j in range(3): vsip.put(X,(i,j),ydata[i][j]) print("Y = \n");VU.mprint(X,'%8.4f') vsip.lusol(ludG,vsip.VSIP_MAT_TRANS,X) vsip.prod(AT,X,Y) print("X = \n");VU.mprint(X,'%8.4f') print("Y = trans(A) X\n");VU.mprint(Y,'%8.4f') chk = 0 for i in range(6): for j in range(3): chk += abs(vsip.get(Y,(i,j)) - ydata[i][j]) if (chk > .01): print("error\n") else: print("agree\n") vsip.destroy(AC) vsip.destroy(AG) vsip.destroy(IC) vsip.destroy(IG) vsip.destroy(B) vsip.destroy(A) vsip.destroy(X) vsip.destroy(Y) vsip.allDestroy(AT) vsip.destroy(ludC) vsip.destroy(ludG)