Esempio n. 1
0
def run_gemm(
    env,
    remote,
    target,
    batch_size,
    in_feat,
    out_feat,
    check_correctness=True,
    print_ir=True,
    samples=4,
):

    # Perform packing only if we are targeting the accelerator
    if "arm_cpu" in target.keys:
        data_pack = False
    elif "vta" in target.keys:
        data_pack = True

    # Derive shapes depending upon packing
    a_shape = (batch_size, in_feat)
    w_shape = (out_feat, in_feat)
    if data_pack:
        data_shape = (batch_size // env.BATCH, in_feat // env.BLOCK_IN,
                      env.BATCH, env.BLOCK_IN)
        kernel_shape = (
            out_feat // env.BLOCK_OUT,
            in_feat // env.BLOCK_IN,
            env.BLOCK_OUT,
            env.BLOCK_IN,
        )
        fcompute = vta.top.dense_packed
        fschedule = vta.top.schedule_dense_packed
    else:
        data_shape = a_shape
        kernel_shape = w_shape
        fcompute = topi.x86.dense_nopack
        fschedule = topi.x86.schedule_dense_nopack
    data = te.placeholder(data_shape, name="data", dtype=env.inp_dtype)
    kernel = te.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)

    # Define base computation schedule
    with target:
        res = fcompute(data, kernel, None, env.acc_dtype)
        res = topi.right_shift(res, 8)
        res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res = topi.cast(res, env.out_dtype)
        # Derive base schedule
        s = fschedule([res])
        if print_ir:
            print(vta.lower(s, [data, kernel, res], simple_mode=True))

    # Derive number of ops
    num_ops = 2 * batch_size * in_feat * out_feat

    # @memoize("vta.tests.test_benchmark_topi.dense.verify")
    def get_ref_data():
        # derive min max for act, wgt types (max non inclusive)
        a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 <<
                                                        (env.INP_WIDTH - 1))
        w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 <<
                                                        (env.WGT_WIDTH - 1))
        a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
        w_np = np.random.randint(w_min, w_max,
                                 size=w_shape).astype(kernel.dtype)

        r_np = np.dot(a_np.astype(env.acc_dtype),
                      w_np.T.astype(env.acc_dtype)).astype(env.acc_dtype)
        return a_np, w_np, r_np

    # Data in original format
    data_np, kernel_np, res_ref = get_ref_data()
    if data_pack:
        data_np = data_np.reshape(batch_size // env.BATCH, env.BATCH,
                                  in_feat // env.BLOCK_IN,
                                  env.BLOCK_IN).transpose((0, 2, 1, 3))
        kernel_np = kernel_np.reshape(out_feat // env.BLOCK_OUT, env.BLOCK_OUT,
                                      in_feat // env.BLOCK_IN,
                                      env.BLOCK_IN).transpose((0, 2, 1, 3))

    # Build
    if "vta" in target.keys:
        mod = vta.build(s, [data, kernel, res],
                        target=target,
                        target_host=env.target_host,
                        name="dense")
    else:
        mod = tvm.build(s, [data, kernel, res],
                        target=target,
                        target_host=env.target_host,
                        name="dense")
    temp = utils.tempdir()
    mod.save(temp.relpath("dense.o"))
    remote.upload(temp.relpath("dense.o"))
    f = remote.load_module("dense.o")
    ctx = remote.context(str(target))

    res_np = np.zeros(topi.utils.get_const_tuple(res.shape)).astype(res.dtype)
    data_arr = tvm.nd.array(data_np, ctx)
    kernel_arr = tvm.nd.array(kernel_np, ctx)
    res_arr = tvm.nd.array(res_np, ctx)
    time_f = f.time_evaluator("dense", ctx, number=samples)

    # In vta sim mode, collect simulator runtime statistics
    stats = {}
    cost = None
    if env.TARGET in ["sim", "tsim"]:
        # Check if we're in local RPC mode (allows us to rebuild the
        # runtime on the fly when varying the VTA designs)
        local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
        if local_rpc:
            if env.TARGET == "sim":
                remote.get_function("vta.simulator.profiler_clear")()
            else:
                remote.get_function("vta.tsim.profiler_clear")()
            cost = time_f(data_arr, kernel_arr, res_arr)
            if env.TARGET == "sim":
                stats = json.loads(
                    remote.get_function("vta.simulator.profiler_status")())
            else:
                stats = json.loads(
                    remote.get_function("vta.tsim.profiler_status")())
        else:
            simulator.clear_stats()
            cost = time_f(data_arr, kernel_arr, res_arr)
            stats = simulator.stats()
    else:
        cost = time_f(data_arr, kernel_arr, res_arr)

    # Check correctness
    correct = False
    if check_correctness:
        res_orig = res_arr.asnumpy()
        if data_pack:
            res_orig = res_orig.reshape(batch_size, out_feat)
        res_ref = res_ref >> 8
        res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res_ref = res_ref.astype(env.out_dtype)
        correct = np.allclose(res_orig, res_ref)

    gops = (num_ops / cost.mean) / float(10**9)
    status = "PASSED" if correct else "FAILED"
    if "arm_cpu" in target.keys:
        device = "CPU"
    elif "vta" in target.keys:
        device = "VTA"
    print("%s DENSE TEST %s: Time cost = %g sec/op, %g GOPS" %
          (device, status, cost.mean, gops))

    return correct, cost, stats
def run_pooling(env,
                remote,
                wl,
                target,
                check_correctness=True,
                print_ir=False,
                samples=10):

    # Workload assertions
    assert wl.hpad == wl.wpad
    pool_type = 'max'

    # Perform packing only if we are targeting the accelerator
    if "arm_cpu" in target.keys:
        data_pack = False
        layout = "NCHW"
        #pooling_fcompute = topi.arm_cpu.pooling_nchw_spatial_pack
        pooling_fcompute = topi.nn.pool
        #pooling_fschedule = topi.arm_cpu.schedule_pooling_nchw_spatial_pack
        pooling_fschedule = topi.generic.schedule_pool
    elif "vta" in target.keys:
        data_pack = True
        layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)
        pooling_fcompute = vta.top.pooling_packed
        pooling_fschedule = vta.top.schedule_pooling_packed

    # Derive shapes depending upon packing
    a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
    w_shape = (wl.out_filter, wl.in_filter, wl.hkernel, wl.wkernel)
    # output shape
    b_shape = (wl.batch, wl.out_filter, 1, 1)
    if data_pack:
        data_shape = (wl.batch // env.BATCH, wl.in_filter // env.BLOCK_IN,
                      wl.height, wl.width, env.BATCH, env.BLOCK_IN)
        kernel_shape = (wl.out_filter // env.BLOCK_OUT,
                        wl.in_filter // env.BLOCK_IN, wl.hkernel, wl.wkernel,
                        env.BLOCK_OUT, env.BLOCK_IN)
        bias_shape = (wl.batch // env.BATCH, wl.out_filter // env.BLOCK_OUT, 1,
                      1, env.BATCH, env.BLOCK_OUT)
    else:
        data_shape = a_shape
        kernel_shape = w_shape
        bias_shape = b_shape
    data = te.placeholder(data_shape, name="data", dtype=env.inp_dtype)
    kernel = te.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
    bias = te.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
    padding = relay.nn.get_pad_tuple2d((wl.hpad, wl.wpad))

    # Define base computation schedule
    with target:
        res = topi.nn.pool(data,
                           kernel=[3, 3],
                           stride=[2, 2],
                           padding=padding,
                           pool_type=pool_type,
                           layout="NCHW")
        #       res = topi.right_shift(res, 8)
        #       res = topi.add(res, bias)
        #       res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
        #       res = topi.cast(res, env.out_dtype)
        # Derive base schedule
        s = pooling_fschedule([res], layout)
        if print_ir:
            print(vta.lower(s, [data, kernel, bias, res], simple_mode=True))
    # get output shape
    _, oc, oh, ow = get_const_tuple(res.shape)
    # Derive number of ops
    fout_height = (wl.height + 2 * wl.hpad - wl.hkernel) // wl.hstride + 1
    fout_width = (wl.width + 2 * wl.wpad - wl.wkernel) // wl.wstride + 1
    num_ops = 2 * wl.batch * fout_height * fout_width * wl.hkernel * wl.wkernel * wl.out_filter * wl.in_filter

    # @memoize("vta.tests.test_benchmark_topi.pooling.verify_nchw")
    def get_ref_data():
        # derive min max for act, wgt, and bias types (max non inclusive)
        a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 <<
                                                        (env.INP_WIDTH - 1))
        b_min, b_max = 0 - 1 << (env.INP_WIDTH + env.WGT_WIDTH -
                                 2), 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2)
        a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)

        pad_shape = (wl.batch, wl.in_filter, wl.height + wl.hpad * 2,
                     wl.width + wl.wpad * 2)
        pad_np = np.zeros(shape=pad_shape).astype(data.dtype)
        no_zero = (range(wl.batch), range(wl.in_filter),
                   (range(wl.hpad, wl.height + wl.hpad)),
                   (range(wl.wpad, wl.width + wl.wpad)))
        pad_np[np.ix_(*no_zero)] = a_np
        b_shape = (wl.batch, oc, oh, ow)
        b_np = np.random.randint(b_min, b_max,
                                 size=b_shape).astype(env.acc_dtype)
        kw, kh = 3, 3
        sw, sh = 2, 2
        for i in range(oh):
            for j in range(ow):
                b_np[:, :, i, j] = np.max(pad_np[:, :, i * sh:i * sh + kh,
                                                 j * sw:j * sw + kw],
                                          axis=(2, 3))
        b_np = np.maximum(b_np, 0.0)
        return a_np, pad_np, b_np

    # Data in original format
    data_np, _, res_ref = get_ref_data()

    # Build
    if "vta" in target.keys:
        mod = vta.build(s, [data, res],
                        target=target,
                        target_host=env.target_host,
                        name="pooling")
    else:
        mod = tvm.build(s, [data, res],
                        target=target,
                        target_host=env.target_host,
                        name="pooling")
    temp = util.tempdir()
    mod.save(temp.relpath("pooling.o"))
    remote.upload(temp.relpath("pooling.o"))
    f = remote.load_module("pooling.o")
    ctx = remote.context(str(target))

    res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype)
    data_arr = tvm.nd.array(data_np, ctx)
    res_arr = tvm.nd.array(res_np, ctx)
    time_f = f.time_evaluator("pooling", ctx, number=samples)

    # In vta sim mode, collect simulator runtime statistics
    stats = {}
    cost = None
    if env.TARGET in ["sim", "tsim"]:
        # Check if we're in local RPC mode (allows us to rebuild the
        # runtime on the fly when varying the VTA designs)
        local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
        if local_rpc:
            if env.TARGET == "sim":
                remote.get_function("vta.simulator.profiler_clear")()
            else:
                remote.get_function("vta.tsim.profiler_clear")()
            cost = time_f(data_arr, res_arr)
            if env.TARGET == "sim":
                stats = json.loads(
                    remote.get_function("vta.simulator.profiler_status")())
            else:
                stats = json.loads(
                    remote.get_function("vta.tsim.profiler_status")())
        else:
            simulator.clear_stats()
            cost = time_f(data_arr, res_arr)
            stats = simulator.stats()
    else:
        cost = time_f(data_arr, res_arr)
        print(cost)

    # Check correctness
    correct = False
    if check_correctness:
        res_orig = res_arr.asnumpy()
        res_orig = np.maximum(res_orig, 0.0)
        res_ref = res_ref.astype(env.out_dtype)
        res_orig = res_orig.astype(env.out_dtype)
        correct = np.allclose(res_orig, res_ref)

    gops = (num_ops / cost.mean) / float(10**9)
    status = "PASSED" if correct else "FAILED"
    if "arm_cpu" in target.keys:
        device = "CPU"
    elif "vta" in target.keys:
        device = "VTA"
    print("%s POOLING TEST %s: Time cost = %g sec/op" %
          (device, status, cost.mean))

    return correct, cost, stats
image = image.transpose((2, 0, 1))
image = image[np.newaxis, :]
image = np.repeat(image, env.BATCH, axis=0)

# Set the network parameters and inputs
m.set_input(**params)
m.set_input('data', image)

# Perform inference and gather execution statistics
# More on: https://docs.tvm.ai/api/python/module.html#tvm.runtime.Module.time_evaluator
num = 4 # number of times we run module for a single measurement
rep = 3 # number of measurements (we derive std dev from this)
timer = m.module.time_evaluator("run", ctx, number=num, repeat=rep)

if env.TARGET in ["sim", "tsim"]:
    simulator.clear_stats()
    timer()
    sim_stats = simulator.stats()
    print("\nExecution statistics:")
    for k, v in sim_stats.items():
        # Since we execute the workload many times, we need to normalize stats
        # Note that there is always one warm up run
        # Therefore we divide the overall stats by (num * rep + 1)
        print("\t{:<16}: {:>16}".format(k, v // (num * rep + 1)))
else:
    tcost = timer()
    std = np.std(tcost.results) * 1000
    mean = tcost.mean * 1000
    print("\nPerformed inference in %.2fms (std = %.2f) for %d samples" % (mean, std, env.BATCH))
    print("Average per sample inference time: %.2fms" % (mean/env.BATCH))
    def _run(env, remote):
        m = 2
        n = 8
        imm_shift = np.random.randint(0, 8)
        imm_scale = np.random.randint(1, 5)
        # compute
        a = tvm.placeholder((m, n, env.BATCH, env.BLOCK_OUT),
                            name="a",
                            dtype=env.acc_dtype)
        a_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT), lambda *i: a(*i),
                            "a_buf")  # DRAM->SRAM
        res_shift = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                                lambda *i: a_buf(*i) + imm_shift,
                                "res_shift")  # compute
        res_scale = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                                lambda *i: res_shift(*i) >> imm_scale,
                                "res_scale")  # compute
        res = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                          lambda *i: res_scale(*i).astype(env.inp_dtype),
                          "res")  # SRAM->DRAM
        # schedule
        s = tvm.create_schedule(res.op)
        s[a_buf].set_scope(env.acc_scope)  # SRAM
        s[res_shift].set_scope(env.acc_scope)  # SRAM
        s[res_scale].set_scope(env.acc_scope)  # SRAM
        s[a_buf].pragma(a_buf.op.axis[0], env.dma_copy)  # DRAM->SRAM
        s[res_shift].pragma(res_shift.op.axis[0], env.alu)  # compute
        s[res_scale].pragma(res_scale.op.axis[0], env.alu)  # compute
        s[res].pragma(res.op.axis[0], env.dma_copy)  # SRAM->DRAM
        # build
        mod = vta.build(s, [a, res], "ext_dev", env.target_host)
        if not remote:
            return
        temp = util.tempdir()
        mod.save(temp.relpath("load_act.o"))
        remote.upload(temp.relpath("load_act.o"))
        f = remote.load_module("load_act.o")
        # verify
        ctx = remote.ext_dev(0)
        a_np = np.random.randint(-10,
                                 10,
                                 size=(m, n, env.BATCH,
                                       env.BLOCK_OUT)).astype(a.dtype)
        res_np = np.right_shift((a_np + imm_shift), imm_scale)
        res_np = res_np.astype(res.dtype)
        a_nd = tvm.nd.array(a_np, ctx)
        res_nd = tvm.nd.array(
            np.zeros((m, n, env.BATCH, env.BLOCK_OUT)).astype(res.dtype), ctx)

        if env.TARGET in ["sim", "tsim"]:
            simulator.clear_stats()

        f(a_nd, res_nd)

        np.testing.assert_equal(res_np, res_nd.asnumpy())

        if env.TARGET in ["sim", "tsim"]:
            sim_stats = simulator.stats()
            print("Shift and scale execution statistics:")
            for k, v in sim_stats.items():
                print("\t{:<16}: {:>16}".format(k, v))
    def _run(env, remote):
        # declare
        n = 3
        m = 5
        pad_before = [2, 1, 0, 0]
        pad_after = [1, 2, 0, 0]
        x = tvm.placeholder((n, m, env.BATCH, env.BLOCK_OUT),
                            name="x",
                            dtype=env.acc_dtype)
        x_buf = topi.nn.pad(x, pad_before, pad_after, name="y")
        # insert no-op that won't be optimized away
        y_buf = tvm.compute(
            (n + pad_before[0] + pad_after[0],
             m + pad_before[1] + pad_after[1], env.BATCH, env.BLOCK_OUT),
            lambda *i: x_buf(*i) >> 0, "y_buf")
        y = tvm.compute(
            (n + pad_before[0] + pad_after[0],
             m + pad_before[1] + pad_after[1], env.BATCH, env.BLOCK_OUT),
            lambda *i: y_buf(*i).astype(env.inp_dtype), "y")
        # schedule
        s = tvm.create_schedule(y.op)
        s[x_buf].set_scope(env.acc_scope)
        s[x_buf].pragma(x_buf.op.axis[0], env.dma_copy)
        s[y_buf].set_scope(env.acc_scope)
        s[y_buf].pragma(y_buf.op.axis[0], env.alu)
        s[y].pragma(y.op.axis[0], env.dma_copy)
        # build
        with vta.build_config():
            mod = vta.build(s, [x, y], "ext_dev", env.target_host)

        if not remote:
            return
        temp = util.tempdir()
        mod.save(temp.relpath("padded_load.o"))
        remote.upload(temp.relpath("padded_load.o"))
        f = remote.load_module("padded_load.o")
        # verify
        ctx = remote.ext_dev(0)
        x_np = np.random.randint(-10,
                                 10,
                                 size=(n, m, env.BATCH,
                                       env.BLOCK_OUT)).astype(x.dtype)
        y_np = np.zeros((n + pad_before[0] + pad_after[0],
                         m + pad_before[1] + pad_after[1], env.BATCH,
                         env.BLOCK_OUT)).astype(y.dtype)
        y_np[pad_before[0]:pad_before[0] + n,
             pad_before[1]:pad_before[1] + m, :] = x_np
        x_nd = tvm.nd.array(x_np, ctx)
        y_nd = tvm.nd.empty(y_np.shape, ctx=ctx, dtype=y_np.dtype)

        if env.TARGET in ["sim", "tsim"]:
            simulator.clear_stats()

        f(x_nd, y_nd)

        np.testing.assert_equal(y_np, y_nd.asnumpy())

        if env.TARGET in ["sim", "tsim"]:
            sim_stats = simulator.stats()
            print("Padded load execution statistics:")
            for k, v in sim_stats.items():
                print("\t{:<16}: {:>16}".format(k, v))
    def _run(env, remote):
        m = 8
        n = 10
        # compute
        a = tvm.placeholder((m, n, env.BATCH, env.BLOCK_OUT),
                            name="a",
                            dtype=env.acc_dtype)
        a_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT), lambda *i: a(*i),
                            "a_buf")  # DRAM->SRAM
        max_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                              lambda *i: tvm.max(a_buf(*i), 0),
                              "res_buf")  # relu
        min_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                              lambda *i: tvm.min(max_buf(*i),
                                                 (1 <<
                                                  (env.INP_WIDTH - 1)) - 1),
                              "max_buf")  # relu
        res = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                          lambda *i: min_buf(*i).astype(env.inp_dtype),
                          "min_buf")  # SRAM->DRAM
        # schedule
        s = tvm.create_schedule(res.op)
        s[a_buf].set_scope(env.acc_scope)  # SRAM
        s[a_buf].pragma(a_buf.op.axis[0], env.dma_copy)  # DRAM->SRAM
        s[max_buf].set_scope(env.acc_scope)  # SRAM
        s[min_buf].set_scope(env.acc_scope)  # SRAM
        s[max_buf].pragma(max_buf.op.axis[0], env.alu)  # compute
        s[min_buf].pragma(min_buf.op.axis[0], env.alu)  # compute
        s[res].pragma(res.op.axis[0], env.dma_copy)  # SRAM->DRAM
        # build
        with vta.build_config():
            mod = vta.build(s, [a, res], "ext_dev", env.target_host)
        if not remote:
            return
        temp = util.tempdir()
        mod.save(temp.relpath("load_act.o"))
        remote.upload(temp.relpath("load_act.o"))
        f = remote.load_module("load_act.o")
        # verify
        ctx = remote.ext_dev(0)
        a_np = np.random.randint(-256,
                                 256,
                                 size=(m, n, env.BATCH,
                                       env.BLOCK_OUT)).astype(a.dtype)
        res_np = np.clip(a_np, 0, (1 <<
                                   (env.INP_WIDTH - 1)) - 1).astype(res.dtype)
        a_nd = tvm.nd.array(a_np, ctx)
        res_nd = tvm.nd.array(
            np.zeros((m, n, env.BATCH, env.BLOCK_OUT)).astype(res.dtype), ctx)

        if env.TARGET in ["sim", "tsim"]:
            simulator.clear_stats()

        f(a_nd, res_nd)

        np.testing.assert_equal(res_np, res_nd.asnumpy())

        if env.TARGET in ["sim", "tsim"]:
            sim_stats = simulator.stats()
            print("Relu execution statistics:")
            for k, v in sim_stats.items():
                print("\t{:<16}: {:>16}".format(k, v))
        def check_alu(tvm_op, np_op=None, use_imm=False, test_name=None):
            """Test ALU"""
            m = 8
            n = 8
            imm = np.random.randint(1, 5)
            # compute
            a = tvm.placeholder((m, n, env.BATCH, env.BLOCK_OUT),
                                name="a",
                                dtype=env.acc_dtype)
            a_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                                lambda *i: a(*i), "a_buf")  #DRAM->SRAM
            if use_imm:
                res_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                                      lambda *i: tvm_op(a_buf(*i), imm),
                                      "res_buf")  #compute
            else:
                b = tvm.placeholder((m, n, env.BATCH, env.BLOCK_OUT),
                                    name="b",
                                    dtype=env.acc_dtype)
                b_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                                    lambda *i: b(*i), "b_buf")  #DRAM->SRAM
                res_buf = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                                      lambda *i: tvm_op(a_buf(*i), b_buf(*i)),
                                      "res_buf")  #compute5B
            res = tvm.compute((m, n, env.BATCH, env.BLOCK_OUT),
                              lambda *i: res_buf(*i).astype(env.inp_dtype),
                              "res")  #SRAM->DRAM
            # schedule
            s = tvm.create_schedule(res.op)
            s[a_buf].set_scope(env.acc_scope)  # SRAM
            s[a_buf].pragma(a_buf.op.axis[0], env.dma_copy)  # DRAM->SRAM
            s[res_buf].set_scope(env.acc_scope)  # SRAM
            s[res_buf].pragma(res_buf.op.axis[0], env.alu)  # compute
            s[res].pragma(res.op.axis[0], env.dma_copy)  # SRAM->DRAM
            if not use_imm:
                s[b_buf].set_scope(env.acc_scope)  # SRAM
                s[b_buf].pragma(b_buf.op.axis[0], env.dma_copy)  # DRAM->SRAM

            if not remote:
                return

            # build
            with vta.build_config():
                if use_imm:
                    mod = vta.build(s, [a, res], "ext_dev", env.target_host)
                else:
                    mod = vta.build(s, [a, b, res], "ext_dev", env.target_host)
            temp = util.tempdir()
            mod.save(temp.relpath("load_act.o"))
            remote.upload(temp.relpath("load_act.o"))
            f = remote.load_module("load_act.o")
            # verify
            ctx = remote.ext_dev(0)
            a_np = np.random.randint(-16,
                                     16,
                                     size=(m, n, env.BATCH,
                                           env.BLOCK_OUT)).astype(a.dtype)
            if use_imm:
                res_np = np_op(a_np, imm) if np_op else tvm_op(a_np, imm)
            else:
                b_np = np.random.randint(-16,
                                         16,
                                         size=(m, n, env.BATCH,
                                               env.BLOCK_OUT)).astype(b.dtype)
                res_np = np_op(a_np, b_np) if np_op else tvm_op(a_np, b_np)
            res_np = res_np.astype(res.dtype)
            a_nd = tvm.nd.array(a_np, ctx)
            res_nd = tvm.nd.array(
                np.zeros((m, n, env.BATCH, env.BLOCK_OUT)).astype(res.dtype),
                ctx)

            if env.TARGET in ["sim", "tsim"]:
                simulator.clear_stats()

            if use_imm:
                f(a_nd, res_nd)
            else:
                b_nd = tvm.nd.array(b_np, ctx)
                f(a_nd, b_nd, res_nd)

            np.testing.assert_equal(res_np, res_nd.asnumpy())

            if env.TARGET in ["sim", "tsim"]:
                sim_stats = simulator.stats()
                print("ALU {} execution statistics:".format(test_name))
                for k, v in sim_stats.items():
                    print("\t{:<16}: {:>16}".format(k, v))
def run_group_conv2d(env,
                     remote,
                     wl,
                     target,
                     check_correctness=True,
                     print_ir=False,
                     samples=4):

    # Workload assertions
    assert wl.hpad == wl.wpad

    # Perform packing only if we are targeting the accelerator
    if "arm_cpu" in target.keys:
        data_pack = False
        layout = "NCHW"
        fcompute = topi.nn.group_conv2d_nchw
        fschedule = topi.generic.schedule_group_conv2d_nchw
    elif "vta" in target.keys:
        data_pack = True
        layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)
        fcompute = vta.top.group_conv2d_packed
        fschedule = vta.top.schedule_group_conv2d_packed

    # Derive shapes depending upon packing
    CI_G = wl.in_filter // wl.groups
    a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
    w_shape = (wl.out_filter, CI_G, wl.hkernel, wl.wkernel)
    b_shape = (wl.batch, wl.out_filter, 1, 1)
    if data_pack:
        data_shape = (
            wl.batch // env.BATCH,
            wl.in_filter // env.BLOCK_IN,
            wl.height,
            wl.width,
            env.BATCH,
            env.BLOCK_IN,
        )
        kernel_shape = (
            wl.out_filter // env.BLOCK_OUT,
            CI_G // env.BLOCK_IN,
            wl.hkernel,
            wl.wkernel,
            env.BLOCK_OUT,
            env.BLOCK_IN,
        )
        bias_shape = (
            wl.batch // env.BATCH,
            wl.out_filter // env.BLOCK_OUT,
            1,
            1,
            env.BATCH,
            env.BLOCK_OUT,
        )
    else:
        data_shape = a_shape
        kernel_shape = w_shape
        bias_shape = b_shape
    data = te.placeholder(data_shape, name="data", dtype=env.inp_dtype)
    kernel = te.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
    bias = te.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
    padding = relay.nn.get_pad_tuple2d((wl.hpad, wl.wpad))

    # Define base computation schedule
    with target:
        res = fcompute(data, kernel, (wl.hstride, wl.wstride), padding, (1, 1),
                       wl.groups, env.acc_dtype)
        res = topi.right_shift(res, 8)
        res = topi.add(res, bias)
        res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res = topi.cast(res, env.out_dtype)
        # Derive base schedule
        s = fschedule([res])
        if print_ir:
            print(vta.lower(s, [data, kernel, bias, res], simple_mode=True))

    # Derive number of ops
    fout_height = (wl.height + 2 * wl.hpad - wl.hkernel) // wl.hstride + 1
    fout_width = (wl.width + 2 * wl.wpad - wl.wkernel) // wl.wstride + 1
    num_ops = (2 * wl.batch * fout_height * fout_width * wl.hkernel *
               wl.wkernel * wl.out_filter * wl.in_filter // wl.groups)

    def get_ref_data():
        # derive min max for act, wgt, and bias types (max non inclusive)
        a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 <<
                                                        (env.INP_WIDTH - 1))
        w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 <<
                                                        (env.WGT_WIDTH - 1))
        b_min, b_max = 0 - 1 << (env.INP_WIDTH + env.WGT_WIDTH -
                                 2), 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2)
        a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
        w_np = np.random.randint(w_min, w_max,
                                 size=w_shape).astype(kernel.dtype)
        b_np = np.random.randint(b_min, b_max,
                                 size=b_shape).astype(env.acc_dtype)
        r_np = tvm.topi.testing.conv2d_nchw_python(
            a_np.astype(env.acc_dtype),
            w_np.astype(env.acc_dtype),
            (wl.hstride, wl.wstride),
            wl.hpad,
            wl.groups,
        ).astype(env.acc_dtype)
        return a_np, w_np, b_np, r_np

    # Data in original format
    data_np, kernel_np, bias_np, res_ref = get_ref_data()
    if data_pack:
        data_np = data_np.reshape(
            wl.batch // env.BATCH,
            env.BATCH,
            wl.in_filter // env.BLOCK_IN,
            env.BLOCK_IN,
            wl.height,
            wl.width,
        ).transpose((0, 2, 4, 5, 1, 3))
        kernel_np = kernel_np.reshape(
            wl.out_filter // env.BLOCK_OUT,
            env.BLOCK_OUT,
            CI_G // env.BLOCK_IN,
            env.BLOCK_IN,
            wl.hkernel,
            wl.wkernel,
        ).transpose((0, 2, 4, 5, 1, 3))
        bias_np = bias_np.reshape(wl.batch // env.BATCH,
                                  wl.out_filter // env.BLOCK_OUT, 1, 1,
                                  env.BATCH, env.BLOCK_OUT)

    # Build
    if "vta" in target.keys:
        with vta.build_config(disabled_pass={"tir.CommonSubexprElimTIR"}):
            mod = vta.build(
                s,
                [data, kernel, bias, res],
                target=tvm.target.Target(target, host=env.target_host),
                name="conv2d",
            )
    else:
        mod = tvm.build(
            s,
            [data, kernel, bias, res],
            target=tvm.target.Target(target, host=env.target_host),
            name="conv2d",
        )
    temp = utils.tempdir()
    mod.save(temp.relpath("conv2d.o"))
    remote.upload(temp.relpath("conv2d.o"))
    f = remote.load_module("conv2d.o")
    dev = remote.device(str(target))

    res_np = np.zeros(topi.utils.get_const_tuple(res.shape)).astype(res.dtype)
    data_arr = tvm.nd.array(data_np, dev)
    kernel_arr = tvm.nd.array(kernel_np, dev)
    bias_arr = tvm.nd.array(bias_np, dev)
    res_arr = tvm.nd.array(res_np, dev)
    time_f = f.time_evaluator("conv2d", dev, number=samples)

    # In vta sim mode, collect simulator runtime statistics
    stats = {}
    cost = None
    if env.TARGET in ["sim", "tsim"]:
        # Check if we're in local RPC mode (allows us to rebuild the
        # runtime on the fly when varying the VTA designs)
        local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
        if local_rpc:
            if env.TARGET == "sim":
                remote.get_function("vta.simulator.profiler_clear")()
            else:
                remote.get_function("vta.tsim.profiler_clear")()
            cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
            if env.TARGET == "sim":
                stats = json.loads(
                    remote.get_function("vta.simulator.profiler_status")())
            else:
                stats = json.loads(
                    remote.get_function("vta.tsim.profiler_status")())
        else:
            simulator.clear_stats()
            cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
            stats = simulator.stats()
    else:
        cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)

    # Check correctness
    correct = False
    if check_correctness:
        res_orig = res_arr.numpy()
        if data_pack:
            res_orig = res_orig.transpose(
                (0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter,
                                            fout_height, fout_width)
            bias_np = bias_np.transpose(
                (0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, 1, 1)
        res_ref = res_ref >> env.WGT_WIDTH
        res_ref += bias_np
        res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res_ref = res_ref.astype(env.out_dtype)
        correct = np.allclose(res_orig, res_ref)

    gops = (num_ops / cost.mean) / float(10**9)
    status = "PASSED" if correct else "FAILED"
    if "arm_cpu" in target.keys:
        device = "CPU"
    elif "vta" in target.keys:
        device = "VTA"
    print("%s GROUP CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" %
          (device, status, cost.mean, gops))

    return correct, cost, stats
def run_conv2d_transpose(env,
                         remote,
                         wl,
                         target,
                         check_correctness=True,
                         print_ir=False,
                         samples=4):

    # Workload assertions
    assert wl.hpad == wl.wpad

    # Perform packing only if we are targeting the accelerator
    if "arm_cpu" in target.keys:
        data_pack = False
        layout = "NCHW"
        fcompute = topi.arm_cpu.conv2d_transpose_nchw
        fschedule = topi.arm_cpu.schedule_conv2d_transpose_nchw
    elif "vta" in target.keys:
        data_pack = True
        layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)
        fcompute = vta.top.conv2d_transpose_packed
        fschedule = vta.top.schedule_conv2d_transpose_packed

    # Derive shapes depending upon packing

    a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
    w_shape = (wl.in_filter, wl.out_filter, wl.hkernel, wl.wkernel)
    if data_pack:
        data_shape = (wl.batch // env.BATCH, wl.in_filter // env.BLOCK_IN,
                      wl.height, wl.width, env.BATCH, env.BLOCK_IN)
        kernel_shape = (wl.out_filter // env.BLOCK_OUT,
                        wl.in_filter // env.BLOCK_IN, wl.hkernel, wl.wkernel,
                        env.BLOCK_OUT, env.BLOCK_IN)
    else:
        data_shape = a_shape
        kernel_shape = w_shape
    data = te.placeholder(data_shape, name="data", dtype=env.inp_dtype)
    kernel = te.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
    padding = relay.nn.get_pad_tuple2d((wl.hpad, wl.wpad))

    # Define base computation schedule
    with target:

        res = fcompute(data, kernel, (wl.hstride, wl.wstride), padding,
                       env.acc_dtype, (wl.o_hpad, wl.o_wpad))
        res = topi.right_shift(res, env.WGT_WIDTH)
        res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res = topi.cast(res, env.out_dtype)
        # Derive base schedule
        s = fschedule([res])
        if print_ir:
            print(vta.lower(s, [data, kernel, res], simple_mode=True))

    # Derive number of ops
    fout_height = (wl.height -
                   1) * wl.hstride - 2 * wl.hpad + wl.hkernel + wl.o_hpad
    fout_width = (wl.width -
                  1) * wl.wstride - 2 * wl.wpad + wl.wkernel + wl.o_wpad
    num_ops = 2 * wl.batch * fout_height * fout_width * wl.hkernel * wl.wkernel * wl.out_filter * wl.in_filter

    # @memoize("vta.tests.test_benchmark_topi.conv2d.verify_nhwc")
    def get_ref_data():
        # derive min max for act and wgt types (max non inclusive)
        a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 <<
                                                        (env.INP_WIDTH - 1))
        w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 <<
                                                        (env.WGT_WIDTH - 1))
        a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
        w_np = np.random.randint(w_min,
                                 w_max,
                                 size=(wl.in_filter, wl.out_filter, wl.hkernel,
                                       wl.wkernel)).astype(kernel.dtype)
        r_np = topi.testing.conv2d_transpose_nchw_python(
            a_np.astype(env.acc_dtype), w_np.astype(env.acc_dtype),
            (wl.hstride, wl.wstride), wl.hpad,
            (wl.o_hpad, wl.o_wpad)).astype(env.acc_dtype)
        return a_np, w_np, r_np

    # Data in original format
    data_np, kernel_np, res_ref = get_ref_data()
    if data_pack:
        data_np = data_np.reshape(wl.batch // env.BATCH, env.BATCH,
                                  wl.in_filter // env.BLOCK_IN, env.BLOCK_IN,
                                  wl.height, wl.width).transpose(
                                      (0, 2, 4, 5, 1, 3))
        kernel_np = kernel_np.reshape(wl.in_filter // env.BLOCK_IN,
                                      env.BLOCK_IN,
                                      wl.out_filter // env.BLOCK_OUT,
                                      env.BLOCK_OUT, wl.hkernel,
                                      wl.wkernel).transpose((2, 0, 4, 5, 3, 1))
        kernel_np = np.flip(kernel_np, 2)
        kernel_np = np.flip(kernel_np, 3)

    # Build
    if "vta" in target.keys:
        mod = vta.build(s, [data, kernel, res],
                        target=target,
                        target_host=env.target_host,
                        name="conv2d_transpose")
    else:
        mod = tvm.build(s, [data, kernel, res],
                        target=target,
                        target_host=env.target_host,
                        name="conv2d_transpose")
    temp = util.tempdir()
    mod.save(temp.relpath("conv2d_transpose.o"))
    remote.upload(temp.relpath("conv2d_transpose.o"))
    f = remote.load_module("conv2d_transpose.o")
    ctx = remote.context(str(target))

    res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype)
    data_arr = tvm.nd.array(data_np, ctx)
    kernel_arr = tvm.nd.array(kernel_np, ctx)
    res_arr = tvm.nd.array(res_np, ctx)
    time_f = f.time_evaluator("conv2d_transpose", ctx, number=samples)

    # In vta sim mode, collect simulator runtime statistics
    stats = {}
    cost = None
    if env.TARGET in ["sim", "tsim"]:
        # Check if we're in local RPC mode (allows us to rebuild the
        # runtime on the fly when varying the VTA designs)
        local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
        if local_rpc:
            if env.TARGET == "sim":
                remote.get_function("vta.simulator.profiler_clear")()
            else:
                remote.get_function("vta.tsim.profiler_clear")()
            cost = time_f(data_arr, kernel_arr, res_arr)
            if env.TARGET == "sim":
                stats = json.loads(
                    remote.get_function("vta.simulator.profiler_status")())
            else:
                stats = json.loads(
                    remote.get_function("vta.tsim.profiler_status")())
        else:
            simulator.clear_stats()
            cost = time_f(data_arr, kernel_arr, res_arr)
            stats = simulator.stats()
    else:
        cost = time_f(data_arr, kernel_arr, res_arr)

    # Check correctness
    correct = False
    if check_correctness:
        res_orig = res_arr.asnumpy()
        if data_pack:
            res_orig = res_orig.transpose(
                (0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter,
                                            fout_height, fout_width)
        res_ref = res_ref >> env.WGT_WIDTH
        res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res_ref = res_ref.astype(env.out_dtype)
        correct = np.allclose(res_orig, res_ref)

    gops = (num_ops / cost.mean) / float(10**9)
    status = "PASSED" if correct else "FAILED"
    if "arm_cpu" in target.keys:
        device = "CPU"
    elif "vta" in target.keys:
        device = "VTA"
    print("%s CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" %
          (device, status, cost.mean, gops))

    return correct, cost, stats
Esempio n. 10
0
def main(model,
         start_pack,
         stop_pack,
         data_shape=(1, 3, 224, 224),
         dtype='float32'):
    # Make sure that TVM was compiled with RPC=1
    assert tvm.module.enabled("rpc")

    ######################################################################
    # Define the platform and model targets
    # -------------------------------------
    # Execute on CPU vs. VTA, and define the model.

    # Load VTA parameters from the vta/config/vta_config.json file
    env = vta.get_env()

    # Set ``device=arm_cpu`` to run inference on the CPU
    # or ``device=vta`` to run inference on the FPGA.
    device = "vta"
    target = env.target if device == "vta" else env.target_vta_cpu

    # Name of Gluon model to compile
    # The ``start_pack`` and ``stop_pack`` labels indicate where
    # to start and end the graph packing relay pass: in other words
    # where to start and finish offloading to VTA.

    ######################################################################
    # Obtain an execution remote
    # ---------------------------------
    # When target is 'pynq', reconfigure FPGA and runtime.
    # Otherwise, if target is 'sim', execute locally.
    print(f"Target is {env.TARGET}")
    if env.TARGET in ["sim", "tsim"]:
        remote = rpc.LocalSession()
    else:
        print(f"Error, incorrect target for benchmarking: {env.TARGET}")

    # Get execution context from remote
    ctx = remote.ext_dev(0) if device == "vta" else remote.cpu(0)

    ######################################################################
    # Build the inference graph runtime
    # ---------------------------------
    # Grab ResNet-18 model from Gluon model zoo and compile with Relay.
    # The compilation steps are:
    #    1) Front end translation from MxNet into Relay module.
    #    2) Apply 8-bit quantization: here we skip the first conv layer,
    #       and dense layer which will both be executed in fp32 on the CPU.
    #    3) Perform graph packing to alter the data layout for tensorization.
    #    4) Perform constant folding to reduce number of operators (e.g. eliminate
    #       batch norm multiply).
    #    5) Perform relay build to object file.
    #    6) Load the object file onto remote (FPGA device).
    #    7) Generate graph runtime, `m`.

    # Load pre-configured AutoTVM schedules
    with autotvm.tophub.context(target):

        # Populate the shape and data type dictionary for ResNet input
        dtype_dict = {"data": 'float32'}
        shape_dict = {"data": data_shape}

        # Measure build start time
        build_start = time.time()

        # Start front end compilation
        if model == 'resnet':
            mod, params = test_resnet_mxnet(env)
        elif model == 'yolo':
            mod, params = test_yolo_darknet()
        elif model == 'lenet':
            mod, params = lenet()
        elif model == 'mobilenet':
            mod, params = mobilenet()
        else:
            print(f"Error, incorrect model name: {model}")

        ### Need to bind params

        # Update shape and type dictionary
        shape_dict.update({k: v.shape for k, v in params.items()})
        dtype_dict.update({k: str(v.dtype) for k, v in params.items()})
        with relay.quantize.qconfig(global_scale=8.0, skip_conv_layers=[0]):
            relay_prog = relay.quantize.quantize(mod['main'], params=params)

        print(f"Finishing quantizing graph")
        # Perform graph packing and constant folding for VTA target
        if target.device_name == "vta":
            assert env.BLOCK_IN == env.BLOCK_OUT
            relay_prog = graph_pack(relay_prog,
                                    env.BATCH,
                                    env.BLOCK_OUT,
                                    env.WGT_WIDTH,
                                    start_name=start_pack,
                                    stop_name=stop_pack)

        print(f"Finishing packing graph")

        # Compile Relay program with AlterOpLayout disabled
        with relay.build_config(opt_level=3, disabled_pass={"AlterOpLayout"}):
            if target.device_name != "vta":
                graph, lib, params = relay.build(relay_prog,
                                                 target=target,
                                                 params=params,
                                                 target_host=env.target_host)
            else:
                with vta.build_config():
                    graph, lib, params = relay.build(
                        relay_prog,
                        target=target,
                        params=params,
                        target_host=env.target_host)

        # Measure Relay build time
        build_time = time.time() - build_start
        print(model + " inference graph built in {0:.2f}s!".format(build_time))

        # Send the inference library over to the remote RPC server
        temp = util.tempdir()
        lib.save(temp.relpath("graphlib.o"))
        remote.upload(temp.relpath("graphlib.o"))
        lib = remote.load_module("graphlib.o")

        # Graph runtime
        m = graph_runtime.create(graph, lib, ctx)
    #
    # # Set the network parameters and inputs
    data = np.random.uniform(size=data_shape).astype(dtype)

    m.set_input(**params)
    m.set_input('data', tvm.nd.array(data.astype(dtype)))

    # Perform inference and gather execution statistics
    # More on: https://docs.tvm.ai/api/python/module.html#tvm.module.Module.time_evaluator
    num = 1  # number of times we run module for a single measurement
    rep = 1  # number of measurements (we derive std dev from this)
    timer = m.module.time_evaluator("run", ctx, number=num, repeat=rep)

    if env.TARGET in ["sim", "tsim"]:
        simulator.clear_stats()
        timer()
        sim_stats = simulator.stats()
        print("\nExecution statistics:")
        for k, v in sim_stats.items():
            # Since we execute the workload many times, we need to normalize stats
            # Note that there is always one warm up run
            # Therefore we divide the overall stats by (num * rep + 1)
            print("\t{:<16}: {:>16}".format(k, v // (num * rep + 1)))
    else:
        tcost = timer()
        std = np.std(tcost.results) * 1000
        mean = tcost.mean * 1000
        print("\nPerformed inference in %.2fms (std = %.2f) for %d samples" %
              (mean, std, env.BATCH))
        print("Average per sample inference time: %.2fms" % (mean / env.BATCH))