Esempio n. 1
0
def pca(points, pvalue=.95, c='c', alpha=0.5, pcaAxes=False, legend=None):
    '''
    Show the oriented PCA ellipsoid that contains fraction pvalue of points.
        axes = True, show the 3 PCA semi axes
    Extra info is stored in actor.sphericity, actor.va, actor.vb, actor.vc
    (sphericity = 1 for a perfect sphere)
    '''
    try:
        from scipy.stats import f
    except:
        vio.printc("Error in ellipsoid(): scipy not installed. Skip.", 1)
        return None
    if len(points) == 0: return None
    P = np.array(points, ndmin=2, dtype=float)
    cov = np.cov(P, rowvar=0)  # covariance matrix
    U, s, R = np.linalg.svd(cov)  # singular value decomposition
    p, n = s.size, P.shape[0]
    fppf = f.ppf(pvalue, p, n - p) * (n - 1) * p * (n + 1) / n / (
        n - p)  # f % point function
    ua, ub, uc = np.sqrt(s * fppf) * 2  # semi-axes (largest first)
    center = np.mean(P, axis=0)  # centroid of the hyperellipsoid
    sphericity = (((ua - ub) / (ua + ub))**2 + ((ua - uc) / (ua + uc))**2 +
                  ((ub - uc) / (ub + uc))**2) / 3. * 4.
    elliSource = vtk.vtkSphereSource()
    elliSource.SetThetaResolution(48)
    elliSource.SetPhiResolution(48)
    matri = vtk.vtkMatrix4x4()
    matri.DeepCopy(
        (R[0][0] * ua, R[1][0] * ub, R[2][0] * uc, center[0], R[0][1] * ua,
         R[1][1] * ub, R[2][1] * uc, center[1], R[0][2] * ua, R[1][2] * ub,
         R[2][2] * uc, center[2], 0, 0, 0, 1))
    vtra = vtk.vtkTransform()
    vtra.SetMatrix(matri)
    ftra = vtk.vtkTransformFilter()
    ftra.SetTransform(vtra)
    ftra.SetInputConnection(elliSource.GetOutputPort())
    ftra.Update()
    actor_elli = vu.makeActor(ftra.GetOutput(), c, alpha, legend=legend)
    actor_elli.GetProperty().BackfaceCullingOn()
    actor_elli.GetProperty().SetInterpolationToPhong()
    if pcaAxes:
        axs = []
        for ax in ([1, 0, 0], [0, 1, 0], [0, 0, 1]):
            l = vtk.vtkLineSource()
            l.SetPoint1([0, 0, 0])
            l.SetPoint2(ax)
            l.Update()
            t = vtk.vtkTransformFilter()
            t.SetTransform(vtra)
            vu.setInput(t, l.GetOutput())
            t.Update()
            axs.append(vu.makeActor(t.GetOutput(), c, alpha))
        finact = vu.makeAssembly([actor_elli] + axs, legend=legend)
    else:
        finact = actor_elli
    setattr(finact, 'sphericity', sphericity)
    setattr(finact, 'va', ua)
    setattr(finact, 'vb', ub)
    setattr(finact, 'vc', uc)
    return finact
Esempio n. 2
0
def spline(points,
           smooth=0.5,
           degree=2,
           s=2,
           c='b',
           alpha=1.,
           nodes=False,
           legend=None,
           res=20):
    '''
    Return a vtkActor for a spline that doesnt necessarly 
    pass exactly throught all points.
        smooth = smoothing factor:
            0 = interpolate points exactly, 
            1 = average point positions
        degree = degree of the spline (1<degree<5)
        nodes = True shows also original the points 
    '''
    try:
        from scipy.interpolate import splprep, splev
    except ImportError:
        vio.printc(
            'Warning: ..scipy not installed, using vtkCardinalSpline instead.',
            5)
        return _vtkspline(points, s, c, alpha, nodes, legend, res)

    Nout = len(points) * res  # Number of points on the spline
    points = np.array(points)

    minx, miny, minz = np.min(points, axis=0)
    maxx, maxy, maxz = np.max(points, axis=0)
    maxb = max(maxx - minx, maxy - miny, maxz - minz)
    smooth *= maxb / 2  # must be in absolute units

    x, y, z = points[:, 0], points[:, 1], points[:, 2]
    tckp, _ = splprep([x, y, z], task=0, s=smooth, k=degree)  # find the knots
    # evaluate spline, including interpolated points:
    xnew, ynew, znew = splev(np.linspace(0, 1, Nout), tckp)

    ppoints = vtk.vtkPoints()  # Generate the polyline for the spline
    profileData = vtk.vtkPolyData()
    for i in range(Nout):
        ppoints.InsertPoint(i, xnew[i], ynew[i], znew[i])
    lines = vtk.vtkCellArray()  # Create the polyline
    lines.InsertNextCell(Nout)
    for i in range(Nout):
        lines.InsertCellPoint(i)
    profileData.SetPoints(ppoints)
    profileData.SetLines(lines)
    actline = vu.makeActor(profileData, c=c, alpha=alpha, legend=legend)
    actline.GetProperty().SetLineWidth(s)
    if nodes:
        actnodes = vs.points(points, r=s * 1.5, c=c, alpha=alpha)
        ass = vu.makeAssembly([actline, actnodes], legend=legend)
        return ass
    else:
        return actline
Esempio n. 3
0
def cluster(points, radius, legend=None):
    '''
    Clustering of points in space.
    radius, is the radius of local search.
    Individual subsets can be accessed through actor.clusters
    '''
    if isinstance(points, vtk.vtkActor):
        poly = vu.polydata(points)
    else:
        src = vtk.vtkPointSource()
        src.SetNumberOfPoints(len(points))
        src.Update()
        vpts = src.GetOutput().GetPoints()
        for i, p in enumerate(points):
            vpts.SetPoint(i, p)
        poly = src.GetOutput()

    cluster = vtk.vtkEuclideanClusterExtraction()
    vu.setInput(cluster, poly)
    cluster.SetExtractionModeToAllClusters()
    cluster.SetRadius(radius)
    cluster.ColorClustersOn()
    cluster.Update()

    idsarr = cluster.GetOutput().GetPointData().GetArray('ClusterId')
    Nc = cluster.GetNumberOfExtractedClusters()

    sets = [[] for i in range(Nc)]
    for i, p in enumerate(points):
        sets[idsarr.GetValue(i)].append(p)

    acts = []
    for i, aset in enumerate(sets):
        acts.append(vs.points(aset, c=i))

    actor = vu.makeAssembly(acts, legend=legend)
    setattr(actor, 'clusters', sets)
    print('Nr. of extracted clusters', Nc)
    if Nc > 10: print('First ten:')
    for i in range(Nc):
        if i > 9:
            print('...')
            break
        print('Cluster #' + str(i) + ',  N =', len(sets[i]))
    print('Access individual clusters through attribute: actor.cluster')
    return actor
Esempio n. 4
0
def _vtkspline(points, s, c, alpha, nodes, legend, res):
    numberOfOutputPoints = len(points) * res  # Number of points on the spline
    numberOfInputPoints = len(points)  # One spline for each direction.
    aSplineX = vtk.vtkCardinalSpline()  #  interpolate the x values
    aSplineY = vtk.vtkCardinalSpline()  #  interpolate the y values
    aSplineZ = vtk.vtkCardinalSpline()  #  interpolate the z values

    inputPoints = vtk.vtkPoints()
    for i in range(0, numberOfInputPoints):
        x = points[i][0]
        y = points[i][1]
        z = points[i][2]
        aSplineX.AddPoint(i, x)
        aSplineY.AddPoint(i, y)
        aSplineZ.AddPoint(i, z)
        inputPoints.InsertPoint(i, x, y, z)

    inputData = vtk.vtkPolyData()
    inputData.SetPoints(inputPoints)
    points = vtk.vtkPoints()
    profileData = vtk.vtkPolyData()
    for i in range(0, numberOfOutputPoints):
        t = (numberOfInputPoints - 1.) / (numberOfOutputPoints - 1.) * i
        x, y, z = aSplineX.Evaluate(t), aSplineY.Evaluate(
            t), aSplineZ.Evaluate(t)
        points.InsertPoint(i, x, y, z)

    lines = vtk.vtkCellArray()  # Create the polyline.
    lines.InsertNextCell(numberOfOutputPoints)
    for i in range(0, numberOfOutputPoints):
        lines.InsertCellPoint(i)

    profileData.SetPoints(points)
    profileData.SetLines(lines)
    actline = vu.makeActor(profileData, c=c, alpha=alpha, legend=legend)
    actline.GetProperty().SetLineWidth(s)
    actline.GetProperty().SetInterpolationToPhong()
    if nodes:
        pts = vu.coordinates(inputData)
        actnodes = vs.points(pts, r=s * 1.5, c=c, alpha=alpha)
        ass = vu.makeAssembly([actline, actnodes], legend=legend)
        return ass
    else:
        return actline
Esempio n. 5
0
def cutPlane(actor, origin=(0, 0, 0), normal=(1, 0, 0), showcut=True):
    '''
    Takes actor and cuts it with the plane defined by a point
    and a normal. 
        showcut  = shows the cut away part as thin wireframe
        showline = marks with a thick line the cut
    '''
    plane = vtk.vtkPlane()
    plane.SetOrigin(origin)
    plane.SetNormal(normal)
    poly = vu.polydata(actor)
    clipper = vtk.vtkClipPolyData()
    vu.setInput(clipper, poly)
    clipper.SetClipFunction(plane)
    clipper.GenerateClippedOutputOn()
    clipper.SetValue(0.)
    clipper.Update()
    if hasattr(actor, 'GetProperty'):
        alpha = actor.GetProperty().GetOpacity()
        c = actor.GetProperty().GetColor()
        bf = actor.GetBackfaceProperty()
    else:
        alpha = 1
        c = 'gold'
        bf = None
    leg = None
    if hasattr(actor, 'legend'): leg = actor.legend
    clipActor = vu.makeActor(clipper.GetOutput(), c=c, alpha=alpha, legend=leg)
    clipActor.SetBackfaceProperty(bf)

    acts = [clipActor]
    if showcut:
        cpoly = clipper.GetClippedOutput()
        restActor = vu.makeActor(cpoly, c=c, alpha=0.05, wire=1)
        acts.append(restActor)

    if len(acts) > 1:
        asse = vu.makeAssembly(acts)
        return asse
    else:
        return clipActor
Esempio n. 6
0
def smoothMLS(actor, f=0.2, decimate=1, recursive=0, showNPlanes=0):
    '''
    Smooth actor or points with a Moving Least Squares variant.
    The list actor.variances contain the residue calculated for each point.
    Input actor's polydata is modified.
    
        f, smoothing factor - typical range s [0,2]
        
        decimate, decimation factor (an integer number) 
        
        recursive, move points while algorithm proceedes
        
        showNPlanes, build an actor showing the fitting plane for N random points            
    '''
    coords = vu.coordinates(actor)
    ncoords = len(coords)
    Ncp = int(ncoords * f / 100)
    nshow = int(ncoords / decimate)
    if showNPlanes: ndiv = int(nshow / showNPlanes * decimate)

    if Ncp < 5:
        vio.printc('Please choose a higher fraction than' + str(f), 1)
        Ncp = 5
    print('smoothMLS: Searching #neighbours, #pt:', Ncp, ncoords)

    poly = vu.polydata(actor, True)
    vpts = poly.GetPoints()
    locator = vtk.vtkPointLocator()
    locator.SetDataSet(poly)
    locator.BuildLocator()
    vtklist = vtk.vtkIdList()
    variances, newsurf, acts = [], [], []
    pb = vio.ProgressBar(0, ncoords)
    for i, p in enumerate(coords):
        pb.print('smoothing...')
        if i % decimate: continue

        locator.FindClosestNPoints(Ncp, p, vtklist)
        points = []
        for j in range(vtklist.GetNumberOfIds()):
            trgp = [0, 0, 0]
            vpts.GetPoint(vtklist.GetId(j), trgp)
            points.append(trgp)
        if len(points) < 5: continue

        points = np.array(points)
        pointsmean = points.mean(axis=0)  # plane center
        uu, dd, vv = np.linalg.svd(points - pointsmean)
        a, b, c = np.cross(vv[0], vv[1])  # normal
        d, e, f = pointsmean  # plane center
        x, y, z = p
        t = (a * d - a * x + b * e - b * y + c * f - c * z)  #/(a*a+b*b+c*c)
        newp = [x + t * a, y + t * b, z + t * c]
        variances.append(dd[2])
        newsurf.append(newp)
        if recursive: vpts.SetPoint(i, newp)

        if showNPlanes and not i % ndiv:
            plane = fitPlane(points, alpha=0.3)  # fitting plane
            iapts = vs.points(points)  # blue points
            acts += [plane, iapts]

    if decimate == 1 and not recursive:
        for i in range(ncoords):
            vpts.SetPoint(i, newsurf[i])

    setattr(actor, 'variances', np.array(variances))

    if showNPlanes:
        apts = vs.points(newsurf, c='r 0.6', r=2)
        ass = vu.makeAssembly([apts] + acts)
        return ass  #NB: a demo actor is returned

    return actor  #NB: original actor is modified
Esempio n. 7
0
def fxy(z='sin(3*x)*log(x-y)/3',
        x=[0, 3],
        y=[0, 3],
        zlimits=[None, None],
        showNan=True,
        zlevels=10,
        wire=False,
        c='b',
        bc='aqua',
        alpha=1,
        legend=True,
        texture=None,
        res=100):
    '''
    Build a surface representing the 3D function specified as a string
    or as a reference to an external function.
    Red points indicate where the function does not exist (showNan).

    zlevels will draw the specified number of z-levels contour lines.

    Examples:
        vp = plotter.vtkPlotter()
        vp.fxy('sin(3*x)*log(x-y)/3')
        or
        def z(x,y): return math.sin(x*y)
        vp.fxy(z) # or equivalently:
        vp.fxy(lambda x,y: math.sin(x*y))
    '''
    if isinstance(z, str):
        try:
            z = z.replace('math.', '').replace('np.', '')
            namespace = locals()
            code = "from math import*\ndef zfunc(x,y): return " + z
            exec(code, namespace)
            z = namespace['zfunc']
        except:
            vio.printc('Syntax Error in fxy()', 1)
            return None

    ps = vtk.vtkPlaneSource()
    ps.SetResolution(res, res)
    ps.SetNormal([0, 0, 1])
    ps.Update()
    poly = ps.GetOutput()
    dx = x[1] - x[0]
    dy = y[1] - y[0]
    todel, nans = [], []

    if zlevels:
        tf = vtk.vtkTriangleFilter()
        vu.setInput(tf, poly)
        tf.Update()
        poly = tf.GetOutput()

    for i in range(poly.GetNumberOfPoints()):
        px, py, _ = poly.GetPoint(i)
        xv = (px + .5) * dx + x[0]
        yv = (py + .5) * dy + y[0]
        try:
            zv = z(xv, yv)
            poly.GetPoints().SetPoint(i, [xv, yv, zv])
        except:
            todel.append(i)
            nans.append([xv, yv, 0])

    if len(todel):
        cellIds = vtk.vtkIdList()
        poly.BuildLinks()

        for i in todel:
            poly.GetPointCells(i, cellIds)
            for j in range(cellIds.GetNumberOfIds()):
                poly.DeleteCell(cellIds.GetId(j))  #flag cell

        poly.RemoveDeletedCells()
        cl = vtk.vtkCleanPolyData()
        vu.setInput(cl, poly)
        cl.Update()
        poly = cl.GetOutput()

    if not poly.GetNumberOfPoints():
        vio.printc('Function is not real in the domain', 1)
        return vtk.vtkActor()

    if zlimits[0]:
        a = cutPlane(poly, (0, 0, zlimits[0]), (0, 0, 1), False)
        poly = vu.polydata(a)
    if zlimits[1]:
        a = cutPlane(poly, (0, 0, zlimits[1]), (0, 0, -1), False)
        poly = vu.polydata(a)

    if c is None:
        elev = vtk.vtkElevationFilter()
        vu.setInput(elev, poly)
        elev.Update()
        poly = elev.GetOutput()

    actor = vu.makeActor(poly,
                         c=c,
                         bc=bc,
                         alpha=alpha,
                         wire=wire,
                         legend=legend,
                         texture=texture)
    acts = [actor]
    if zlevels:
        elevation = vtk.vtkElevationFilter()
        vu.setInput(elevation, poly)
        bounds = poly.GetBounds()
        elevation.SetLowPoint(0, 0, bounds[4])
        elevation.SetHighPoint(0, 0, bounds[5])
        elevation.Update()
        bcf = vtk.vtkBandedPolyDataContourFilter()
        vu.setInput(bcf, elevation.GetOutput())
        bcf.SetScalarModeToValue()
        bcf.GenerateContourEdgesOn()
        bcf.GenerateValues(zlevels, elevation.GetScalarRange())
        bcf.Update()
        zpoly = bcf.GetContourEdgesOutput()
        zbandsact = vu.makeActor(zpoly, c='k', alpha=alpha)
        zbandsact.GetProperty().SetLineWidth(1.5)
        acts.append(zbandsact)

    if showNan and len(todel):
        bb = actor.GetBounds()
        zm = (bb[4] + bb[5]) / 2
        nans = np.array(nans) + [0, 0, zm]
        nansact = vs.points(nans, c='red', alpha=alpha / 2)
        acts.append(nansact)

    if len(acts) > 1:
        asse = vu.makeAssembly(acts)
        return asse
    else:
        return actor