Esempio n. 1
0
def get_invVR_aff2Ds(kpts, H=None):
    """
    Returns matplotlib keypoint transformations (circle -> ellipse)

    Example:
        >>> # Test CV2 ellipse vs mine using MSER
        >>> import vtool as vt
        >>> import cv2
        >>> import wbia.plottool as pt
        >>> img_fpath = ut.grab_test_imgpath(ut.get_argval('--fname', default='zebra.png'))
        >>> imgBGR = vt.imread(img_fpath)
        >>> imgGray = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2GRAY)
        >>> mser = cv2.MSER_create()
        >>> regions, bboxs = mser.detectRegions(imgGray)
        >>> region = regions[0]
        >>> bbox = bboxs[0]
        >>> vis = imgBGR.copy()
        >>> vis[region.T[1], region.T[0], :] = 0
        >>> hull = cv2.convexHull(region.reshape(-1, 1, 2))
        >>> cv2.polylines(vis, [hull], 1, (0, 255, 0))
        >>> ell = cv2.fitEllipse(region)
        >>> cv2.ellipse(vis, ell, (255))
        >>> ((cx, cy), (rx, ry), degrees) = ell
        >>> # Convert diameter to radians
        >>> rx /= 2
        >>> ry /= 2
        >>> # Make my version of ell
        >>> theta = np.radians(degrees)  # opencv lives in radians
        >>> S = vt.scale_mat3x3(rx, ry)
        >>> T = vt.translation_mat3x3(cx, cy)
        >>> R = vt.rotation_mat3x3(theta)
        >>> #R = np.eye(3)
        >>> invVR = T.dot(R).dot(S)
        >>> kpts = vt.flatten_invV_mats_to_kpts(np.array([invVR]))
        >>> pt.imshow(vis)
        >>> # MINE IS MUCH LARGER (by factor of 2)) WHY?
        >>> # we start out with a unit circle not a half circle
        >>> pt.draw_keypoints(pt.gca(), kpts, pts=True, ori=True, eig=True, rect=True)
    """
    import vtool.keypoint as ktool

    # invVR_mats = ktool.get_invV_mats(kpts, with_trans=True, with_ori=True)
    invVR_mats = ktool.get_invVR_mats3x3(kpts)
    if H is None:
        invVR_aff2Ds = [mpl.transforms.Affine2D(invVR) for invVR in invVR_mats]
    else:
        invVR_aff2Ds = [
            HomographyTransform(H.dot(invVR)) for invVR in invVR_mats
        ]
    return invVR_aff2Ds
Esempio n. 2
0
def test_affine_errors(H, kpts1, kpts2, fm, xy_thresh_sqrd, scale_thresh_sqrd,
                       ori_thresh):
    """
    used for refinement as opposed to initial estimation
    """
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    xy2_m = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    refined_inliers, refined_errors = _test_hypothesis_inliers(
        H, invVR1s_m, xy2_m, det2_m, ori2_m, xy_thresh_sqrd, scale_thresh_sqrd,
        ori_thresh)
    refined_tup1 = (refined_inliers, refined_errors, H)
    return refined_tup1
Esempio n. 3
0
def test_affine_errors(H, kpts1, kpts2, fm, xy_thresh_sqrd, scale_thresh_sqrd,
                       ori_thresh):
    """
    used for refinement as opposed to initial estimation
    """
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    xy2_m  = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    refined_inliers, refined_errors = _test_hypothesis_inliers(
        H, invVR1s_m, xy2_m, det2_m, ori2_m, xy_thresh_sqrd, scale_thresh_sqrd,
        ori_thresh)
    refined_tup1 = (refined_inliers, refined_errors, H)
    return refined_tup1
Esempio n. 4
0
def get_invVR_aff2Ds(kpts, H=None):
    """
    Returns matplotlib keypoint transformations (circle -> ellipse)

    Example:
        >>> # Test CV2 ellipse vs mine using MSER
        >>> import plottool as pt
        >>> pt.qt4ensure()
        >>> img_fpath = ut.grab_test_imgpath(ut.get_argval('--fname', default='zebra.png'))
        >>> imgBGR = vt.imread(img_fpath)
        >>> imgGray = cv2.cvtColor(imgBGR, cv2.COLOR_BGR2GRAY)
        >>> mser = cv2.MSER_create()
        >>> regions, bboxs = mser.detectRegions(imgGray)
        >>> region = regions[0]
        >>> bbox = bboxes[0]
        >>> vis = imgBGR.copy()
        >>> vis[region.T[1], region.T[0], :] = 0
        >>> hull = cv2.convexHull(region.reshape(-1, 1, 2))
        >>> cv2.polylines(vis, [hull], 1, (0, 255, 0))
        >>> ell = cv2.fitEllipse(region)
        >>> cv2.ellipse(vis, ell, (255))
        >>> ((cx, cy), (rx, ry), degrees) = ell
        >>> # Convert diameter to radians
        >>> rx /= 2
        >>> ry /= 2
        >>> # Make my version of ell
        >>> theta = np.radians(degrees)  # opencv lives in radians
        >>> S = vt.scale_mat3x3(rx, ry)
        >>> T = vt.translation_mat3x3(cx, cy)
        >>> R = vt.rotation_mat3x3(theta)
        >>> #R = np.eye(3)
        >>> invVR = T.dot(R).dot(S)
        >>> kpts = vt.flatten_invV_mats_to_kpts(np.array([invVR]))
        >>> pt.imshow(vis)
        >>> # MINE IS MUCH LARGER (by factor of 2)) WHY?
        >>> # we start out with a unit circle not a half circle
        >>> pt.draw_keypoints(pt.gca(), kpts, pts=True, ori=True, eig=True, rect=True)
    """
    #invVR_mats = ktool.get_invV_mats(kpts, with_trans=True, with_ori=True)
    invVR_mats = ktool.get_invVR_mats3x3(kpts)
    if H is None:
        invVR_aff2Ds = [mpl.transforms.Affine2D(invVR)
                        for invVR in invVR_mats]
    else:
        invVR_aff2Ds = [HomographyTransform(H.dot(invVR))
                        for invVR in invVR_mats]
    return invVR_aff2Ds
Esempio n. 5
0
def get_affine_inliers(kpts1, kpts2, fm, fs, xy_thresh_sqrd, scale_thresh_sqrd,
                       ori_thresh):
    """
    Estimates inliers deterministically using elliptical shapes

    Compute all transforms from kpts1 to kpts2 (enumerate all hypothesis)
    We transform from chip1 -> chip2
    The determinants are squared keypoint scales

    FROM PERDOCH 2009::
        H = inv(Aj).dot(Rj.T).dot(Ri).dot(Ai)
        H = inv(Aj).dot(Ai)
        The input invVs = perdoch.invA's

    CommandLine:
        python -m vtool.spatial_verification --test-get_affine_inliers

    Example:
        >>> # ENABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import vtool.tests.dummy as dummy
        >>> import vtool.keypoint as ktool
        >>> kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        >>> fm = dummy.make_dummy_fm(len(kpts1)).astype(np.int32)
        >>> fs = np.ones(len(fm), dtype=np.float64)
        >>> xy_thresh_sqrd = ktool.KPTS_DTYPE(.009) ** 2
        >>> scale_thresh_sqrd = ktool.KPTS_DTYPE(2)
        >>> ori_thresh = ktool.KPTS_DTYPE(TAU / 4)
        >>> output = get_affine_inliers(kpts1, kpts2, fm, fs, xy_thresh_sqrd,
        >>>                             scale_thresh_sqrd, ori_thresh)
        >>> result = ut.hashstr(output)
        >>> print(result)
        89kz8nh6p+66t!+u

    Ignore::
        from vtool.spatial_verification import *  # NOQA
        import vtool.tests.dummy as dummy
        import vtool.keypoint as ktool
        kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        a = kpts1[fm.T[0]]
        b = kpts1.take(fm.T[0])

        align = fm.dtype.itemsize * fm.shape[1]
        align2 = [fm.dtype.itemsize, fm.dtype.itemsize]
        viewtype1 = np.dtype(np.void, align)
        viewtype2 = np.dtype(np.int32, align2)
        c = np.ascontiguousarray(fm).view(viewtype1)
        fm_view = np.ascontiguousarray(fm).view(viewtype1)
        qfx = fm.view(np.dtype(np.int32 np.int32.itemsize))
        dfx = fm.view(np.dtype(np.int32, np.int32.itemsize))
        d = np.ascontiguousarray(c).view(viewtype2)

        fm.view(np.dtype(np.void, align))
        np.ascontiguousarray(fm).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    """
    #http://ipython-books.github.io/featured-01/
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)

    # Get keypoints to project in matrix form
    #invVR2s_m = ktool.get_invV_mats(kpts2_m, with_trans=True, with_ori=True)
    #invVR1s_m = ktool.get_invV_mats(kpts1_m, with_trans=True, with_ori=True)
    invVR2s_m = ktool.get_invVR_mats3x3(kpts2_m)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    RV1s_m = ktool.invert_invV_mats(invVR1s_m)  # 539 us
    # BUILD ALL HYPOTHESIS TRANSFORMS: The transform from kp1 to kp2 is:
    Aff_mats = matrix_multiply(invVR2s_m, RV1s_m)
    # Get components to test projects against
    xy2_m = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    # SLOWER EQUIVALENT
    # RV1s_m    = ktool.get_V_mats(kpts1_m, with_trans=True, with_ori=True)  # 5.2 ms
    # xy2_m  = ktool.get_invVR_mats_xys(invVR2s_m)
    # ori2_m = ktool.get_invVR_mats_oris(invVR2s_m)
    # assert np.all(ktool.get_oris(kpts2_m) == ktool.get_invVR_mats_oris(invVR2s_m))
    # assert np.all(ktool.get_xys(kpts2_m) == ktool.get_invVR_mats_xys(invVR2s_m))

    # The previous versions of this function were all roughly comparable.
    # The for loop one was the slowest. I'm deciding to go with the one
    # where there is no internal function definition. It was moderately faster,
    # and it gives us access to profile that function
    inliers_and_errors_list = [
        _test_hypothesis_inliers(Aff, invVR1s_m, xy2_m, det2_m, ori2_m,
                                 xy_thresh_sqrd, scale_thresh_sqrd, ori_thresh)
        for Aff in Aff_mats
    ]
    aff_inliers_list = [tup[0] for tup in inliers_and_errors_list]
    aff_errors_list = [tup[1] for tup in inliers_and_errors_list]
    return aff_inliers_list, aff_errors_list, Aff_mats
Esempio n. 6
0
def get_affine_inliers(kpts1, kpts2, fm, fs,
                        xy_thresh_sqrd,
                        scale_thresh_sqrd,
                        ori_thresh):
    """
    Estimates inliers deterministically using elliptical shapes

    Compute all transforms from kpts1 to kpts2 (enumerate all hypothesis)
    We transform from chip1 -> chip2
    The determinants are squared keypoint scales

    FROM PERDOCH 2009::
        H = inv(Aj).dot(Rj.T).dot(Ri).dot(Ai)
        H = inv(Aj).dot(Ai)
        The input invVs = perdoch.invA's

    CommandLine:
        python -m vtool.spatial_verification --test-get_affine_inliers

    Example:
        >>> # ENABLE_DOCTEST
        >>> from vtool.spatial_verification import *  # NOQA
        >>> import vtool.tests.dummy as dummy
        >>> import vtool.keypoint as ktool
        >>> kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        >>> fm = dummy.make_dummy_fm(len(kpts1)).astype(np.int32)
        >>> fs = np.ones(len(fm), dtype=np.float64)
        >>> xy_thresh_sqrd = ktool.KPTS_DTYPE(.009) ** 2
        >>> scale_thresh_sqrd = ktool.KPTS_DTYPE(2)
        >>> ori_thresh = ktool.KPTS_DTYPE(TAU / 4)
        >>> output = get_affine_inliers(kpts1, kpts2, fm, fs, xy_thresh_sqrd,
        >>>                             scale_thresh_sqrd, ori_thresh)
        >>> result = ut.hashstr(output)
        >>> print(result)
        89kz8nh6p+66t!+u

    Ignore::
        from vtool.spatial_verification import *  # NOQA
        import vtool.tests.dummy as dummy
        import vtool.keypoint as ktool
        kpts1, kpts2 = dummy.get_dummy_kpts_pair((100, 100))
        a = kpts1[fm.T[0]]
        b = kpts1.take(fm.T[0])

        align = fm.dtype.itemsize * fm.shape[1]
        align2 = [fm.dtype.itemsize, fm.dtype.itemsize]
        viewtype1 = np.dtype(np.void, align)
        viewtype2 = np.dtype(np.int32, align2)
        c = np.ascontiguousarray(fm).view(viewtype1)
        fm_view = np.ascontiguousarray(fm).view(viewtype1)
        qfx = fm.view(np.dtype(np.int32 np.int32.itemsize))
        dfx = fm.view(np.dtype(np.int32, np.int32.itemsize))
        d = np.ascontiguousarray(c).view(viewtype2)

        fm.view(np.dtype(np.void, align))
        np.ascontiguousarray(fm).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    """
    #http://ipython-books.github.io/featured-01/
    kpts1_m = kpts1.take(fm.T[0], axis=0)
    kpts2_m = kpts2.take(fm.T[1], axis=0)

    # Get keypoints to project in matrix form
    #invVR2s_m = ktool.get_invV_mats(kpts2_m, with_trans=True, with_ori=True)
    #invVR1s_m = ktool.get_invV_mats(kpts1_m, with_trans=True, with_ori=True)
    invVR2s_m = ktool.get_invVR_mats3x3(kpts2_m)
    invVR1s_m = ktool.get_invVR_mats3x3(kpts1_m)
    RV1s_m    = ktool.invert_invV_mats(invVR1s_m)  # 539 us
    # BUILD ALL HYPOTHESIS TRANSFORMS: The transform from kp1 to kp2 is:
    Aff_mats = matrix_multiply(invVR2s_m, RV1s_m)
    # Get components to test projects against
    xy2_m  = ktool.get_xys(kpts2_m)
    det2_m = ktool.get_sqrd_scales(kpts2_m)
    ori2_m = ktool.get_oris(kpts2_m)
    # SLOWER EQUIVALENT
    # RV1s_m    = ktool.get_V_mats(kpts1_m, with_trans=True, with_ori=True)  # 5.2 ms
    # xy2_m  = ktool.get_invVR_mats_xys(invVR2s_m)
    # ori2_m = ktool.get_invVR_mats_oris(invVR2s_m)
    # assert np.all(ktool.get_oris(kpts2_m) == ktool.get_invVR_mats_oris(invVR2s_m))
    # assert np.all(ktool.get_xys(kpts2_m) == ktool.get_invVR_mats_xys(invVR2s_m))

    # The previous versions of this function were all roughly comparable.
    # The for loop one was the slowest. I'm deciding to go with the one
    # where there is no internal function definition. It was moderately faster,
    # and it gives us access to profile that function
    inliers_and_errors_list = [_test_hypothesis_inliers(Aff, invVR1s_m, xy2_m,
                                                        det2_m, ori2_m,
                                                        xy_thresh_sqrd,
                                                        scale_thresh_sqrd,
                                                        ori_thresh)
                               for Aff in Aff_mats]
    aff_inliers_list = [tup[0] for tup in inliers_and_errors_list]
    aff_errors_list  = [tup[1] for tup in inliers_and_errors_list]
    return aff_inliers_list, aff_errors_list, Aff_mats