Esempio n. 1
0
def demo_kalman_voltimeter():
    """
    Examples
    --------
    >>> demo_kalman_voltimeter()

    >>> plt.close()
    """
    V0 = 12
    h = np.atleast_2d(1)  # voltimeter measure the voltage itself
    q = 1e-9  # variance of process noise as the car operates
    r = 0.05**2  # variance of measurement error
    b = 0  # no system input
    u = 0  # no system input
    filt = Kalman(R=r, A=1, Q=q, H=h, B=b)

    # Generate random voltages and watch the filter operate.
    n = 50
    truth = np.random.randn(n) * np.sqrt(q) + V0
    z = truth + np.random.randn(n) * np.sqrt(r)  # measurement
    x = np.zeros(n)

    for i, zi in enumerate(z):
        x[i] = filt(zi, u)  # perform a Kalman filter iteration

    _hz = plt.plot(z, 'r.', label='observations')
    # a-posteriori state estimates:
    _hx = plt.plot(x, 'b-', label='Kalman output')
    _ht = plt.plot(truth, 'g-', label='true voltage')
    plt.legend()
    plt.title('Automobile Voltimeter Example')
Esempio n. 2
0
def kde_demo4(N=50):
    """Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
       for 1D multimodal distributions

    KDEDEMO4 shows that the improved Sheather-Jones plug-in smoothing is a
    better compared to normal reference rules (in this case the hns)

    Examples
    --------
    >>> kde_demo4()
    """
    data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(N,)),
                      st.norm.rvs(loc=-5, scale=1, size=(N,))))

    # x = np.linspace(1.5e-3, 5, 55)

    kde = KDE(data, kernel=Kernel('gauss', 'hns'))
    f = kde(output='plot', title='Ordinary KDE', plotflag=1)

    kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
    f1 = kde1(output='plot', label='Ordinary KDE', plotflag=1)

    plt.figure(0)
    f.plot('r', label='hns={0}'.format(kde.hs))
    # plt.figure(2)
    f1.plot('b', label='hisj={0}'.format(kde1.hs))
    x = np.linspace(-9, 9)
    plt.plot(x, (st.norm.pdf(x, loc=-5, scale=1) +
                 st.norm.pdf(x, loc=5, scale=1)) / 2, 'k:',
             label='True density')
    plt.legend()
Esempio n. 3
0
def test_kalman():
    V0 = 12
    h = np.atleast_2d(1)  # voltimeter measure the voltage itself
    q = 1e-9  # variance of process noise as the car operates
    r = 0.05 ** 2  # variance of measurement error
    b = 0  # no system input
    u = 0  # no system input
    filt = Kalman(R=r, A=1, Q=q, H=h, B=b)

    # Generate random voltages and watch the filter operate.
    n = 50
    truth = np.random.randn(n) * np.sqrt(q) + V0
    z = truth + np.random.randn(n) * np.sqrt(r)  # measurement
    x = np.zeros(n)

    for i, zi in enumerate(z):
        x[i] = filt(zi, u)  # perform a Kalman filter iteration

    _hz = plt.plot(z, 'r.', label='observations')
    # a-posteriori state estimates:
    _hx = plt.plot(x, 'b-', label='Kalman output')
    _ht = plt.plot(truth, 'g-', label='true voltage')
    plt.legend()
    plt.title('Automobile Voltimeter Example')
    plt.show('hold')
Esempio n. 4
0
def kreg_demo1(hs=None, fast=True, fun='hisj'):
    """Compare KRegression to KernelReg from statsmodels.nonparametric

    Examples
    --------
    >>> kreg_demo1()
    """
    N = 100
    # ei = np.random.normal(loc=0, scale=0.075, size=(N,))
    ei = np.array([
        -0.08508516, 0.10462496, 0.07694448, -0.03080661, 0.05777525,
        0.06096313, -0.16572389, 0.01838912, -0.06251845, -0.09186784,
        -0.04304887, -0.13365788, -0.0185279, -0.07289167, 0.02319097,
        0.06887854, -0.08938374, -0.15181813, 0.03307712, 0.08523183,
        -0.0378058, -0.06312874, 0.01485772, 0.06307944, -0.0632959,
        0.18963205, 0.0369126, -0.01485447, 0.04037722, 0.0085057,
        -0.06912903, 0.02073998, 0.1174351, 0.17599277, -0.06842139,
        0.12587608, 0.07698113, -0.0032394, -0.12045792, -0.03132877,
        0.05047314, 0.02013453, 0.04080741, 0.00158392, 0.10237899,
        -0.09069682, 0.09242174, -0.15445323, 0.09190278, 0.07138498,
        0.03002497, 0.02495252, 0.01286942, 0.06449978, 0.03031802,
        0.11754861, -0.02322272, 0.00455867, -0.02132251, 0.09119446,
        -0.03210086, -0.06509545, 0.07306443, 0.04330647, 0.078111,
        -0.04146907, 0.05705476, 0.02492201, -0.03200572, -0.02859788,
        -0.05893749, 0.00089538, 0.0432551, 0.04001474, 0.04888828,
        -0.17708392, 0.16478644, 0.1171006, 0.11664846, 0.01410477,
        -0.12458953, -0.11692081, 0.0413047, -0.09292439, -0.07042327,
        0.14119701, -0.05114335, 0.04994696, -0.09520663, 0.04829406,
        -0.01603065, -0.1933216, 0.19352763, 0.11819496, 0.04567619,
        -0.08348306, 0.00812816, -0.00908206, 0.14528945, 0.02901065])
    x = np.linspace(0, 1, N)

    va_1 = 0.3 ** 2
    va_2 = 0.7 ** 2
    y0 = np.exp(-x ** 2 / (2 * va_1)) + 1.3 * np.exp(-(x - 1) ** 2 / (2 * va_2))
    y = y0 + ei
    kernel = Kernel('gauss', fun=fun)
    hopt = kernel.hisj(x)
    kreg = KRegression(
        x, y, p=0, hs=hs, kernel=kernel, xmin=-2 * hopt, xmax=1 + 2 * hopt)
    if fast:
        kreg.__call__ = kreg.eval_grid_fast

    f = kreg(x, output='plot', title='Kernel regression', plotflag=1)
    plt.figure(0)
    f.plot(label='p=0')

    kreg.p = 1
    f1 = kreg(x, output='plot', title='Kernel regression', plotflag=1)
    f1.plot(label='p=1')
    # print(f1.data)
    plt.plot(x, y, '.', label='data')
    plt.plot(x, y0, 'k', label='True model')
    from statsmodels.nonparametric.kernel_regression import KernelReg
    kreg2 = KernelReg(y, x, ('c'))
    y2 = kreg2.fit(x)
    plt.plot(x, y2[0], 'm', label='statsmodel')

    plt.legend()
Esempio n. 5
0
def _plot_error(neval, err_dic, plot_error):
    if plot_error:
        plt.figure(0)
        for name in err_dic:
            plt.loglog(neval, err_dic[name], label=name)

        plt.xlabel('number of function evaluations')
        plt.ylabel('error')
        plt.legend()
Esempio n. 6
0
def demo_kalman_sine():
    """Kalman Filter demonstration with sine signal.

    Examples
    --------
    >>> demo_kalman_sine()

    >>> plt.close()
    """
    sd = 0.5
    dt = 0.1
    w = 1
    T = np.arange(0, 30 + dt / 2, dt)
    n = len(T)
    X = 3 * np.sin(w * T)
    Y = X + sd * np.random.randn(n)
    ''' Initialize KF to values
       x = 0
       dx/dt = 0
     with great uncertainty in derivative
    '''
    M = np.zeros((2, 1))
    P = np.diag([0.1, 2])
    R = sd**2
    H = np.atleast_2d([1, 0])
    q = 0.1
    F = np.atleast_2d([[0, 1], [0, 0]])
    A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)

    # Track and animate
    m = M.shape[0]
    _MM = np.zeros((m, n))
    _PP = np.zeros((m, m, n))
    '''In this demonstration we estimate a stationary sine signal from noisy
    measurements by using the classical Kalman filter.'
    '''
    filt = Kalman(R=R, x=M, P=P, A=A, Q=Q, H=H, B=0)

    # Generate random voltages and watch the filter operate.
    # n = 50
    # truth = np.random.randn(n) * np.sqrt(q) + V0
    # z = truth + np.random.randn(n) * np.sqrt(r)  # measurement
    truth = X
    z = Y
    x = np.zeros((n, m))

    for i, zi in enumerate(z):
        x[i] = np.ravel(filt(zi, u=0))

    _hz = plt.plot(z, 'r.', label='observations')
    # a-posteriori state estimates:
    _hx = plt.plot(x[:, 0], 'b-', label='Kalman output')
    _ht = plt.plot(truth, 'g-', label='true voltage')
    plt.legend()
    plt.title('Automobile Voltimeter Example')
Esempio n. 7
0
def test_kalman_sine():
    """Kalman Filter demonstration with sine signal."""
    sd = 1.
    dt = 0.1
    w = 1
    T = np.arange(0, 30 + dt / 2, dt)
    n = len(T)
    X = np.sin(w * T)
    Y = X + sd * np.random.randn(n)

    ''' Initialize KF to values
       x = 0
       dx/dt = 0
     with great uncertainty in derivative
    '''
    M = np.zeros((2, 1))
    P = np.diag([0.1, 2])
    R = sd ** 2
    H = np.atleast_2d([1, 0])
    q = 0.1
    F = np.atleast_2d([[0, 1],
                       [0, 0]])
    A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)

    # Track and animate
    m = M.shape[0]
    _MM = np.zeros((m, n))
    _PP = np.zeros((m, m, n))
    '''In this demonstration we estimate a stationary sine signal from noisy
    measurements by using the classical Kalman filter.'
    '''
    filt = Kalman(R=R, x=M, P=P, A=A, Q=Q, H=H, B=0)

    # Generate random voltages and watch the filter operate.
    # n = 50
    # truth = np.random.randn(n) * np.sqrt(q) + V0
    # z = truth + np.random.randn(n) * np.sqrt(r)  # measurement
    truth = X
    z = Y
    x = np.zeros((n, m))

    for i, zi in enumerate(z):
        x[i] = filt(zi, u=0).ravel()

    _hz = plt.plot(z, 'r.', label='observations')
    # a-posteriori state estimates:
    _hx = plt.plot(x[:, 0], 'b-', label='Kalman output')
    _ht = plt.plot(truth, 'g-', label='true voltage')
    plt.legend()
    plt.title('Automobile Voltimeter Example')
    plt.show()
Esempio n. 8
0
def qdemo(f, a, b):
    '''
    Compares different quadrature rules.

    Parameters
    ----------
    f : callable
        function
    a,b : scalars
        lower and upper integration limits

    Details
    -------
    qdemo(f,a,b) computes and compares various approximations to
    the integral of f from a to b.  Three approximations are used,
    the composite trapezoid, Simpson's, and Boole's rules, all with
    equal length subintervals.
    In a case like qdemo(exp,0,3) one can see the expected
    convergence rates for each of the three methods.
    In a case like qdemo(sqrt,0,3), the convergence rate is limited
    not by the method, but by the singularity of the integrand.

    Example
    -------
    >>> import numpy as np
    >>> qdemo(np.exp,0,3)
    true value =  19.08553692
     ftn         Trapezoid                  Simpsons                   Booles
    evals    approx       error          approx       error           approx        error
       3, 22.5366862979, 3.4511493747, 19.5061466023, 0.4206096791, 19.4008539142, 0.3153169910
       5, 19.9718950387, 0.8863581155, 19.1169646189, 0.0314276957, 19.0910191534, 0.0054822302
       9, 19.3086731081, 0.2231361849, 19.0875991312, 0.0020622080, 19.0856414320, 0.0001045088
      17, 19.1414188470, 0.0558819239, 19.0856674267, 0.0001305035, 19.0855386464, 0.0000017232
      33, 19.0995135407, 0.0139766175, 19.0855451052, 0.0000081821, 19.0855369505, 0.0000000273
      65, 19.0890314614, 0.0034945382, 19.0855374350, 0.0000005118, 19.0855369236, 0.0000000004
     129, 19.0864105817, 0.0008736585, 19.0855369552, 0.0000000320, 19.0855369232, 0.0000000000
     257, 19.0857553393, 0.0002184161, 19.0855369252, 0.0000000020, 19.0855369232, 0.0000000000
     513, 19.0855915273, 0.0000546041, 19.0855369233, 0.0000000001, 19.0855369232, 0.0000000000
     ftn         Clenshaw                    Chebychev                    Gauss-L
    evals    approx       error          approx       error           approx        error
       3, 19.5061466023, 0.4206096791, 0.0000000000, 1.0000000000, 19.0803304585, 0.0052064647
       5, 19.0834145766, 0.0021223465, 0.0000000000, 1.0000000000, 19.0855365951, 0.0000003281
       9, 19.0855369150, 0.0000000082, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
      17, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
      33, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
      65, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
     129, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
     257, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
     513, 19.0855369232, 0.0000000000, 0.0000000000, 1.0000000000, 19.0855369232, 0.0000000000
    
    '''
    # use quad8 with small tolerance to get "true" value
    #true1 = quad8(f,a,b,1e-10)
    #[true tol]= gaussq(f,a,b,1e-12)
    #[true tol] = agakron(f,a,b,1e-13)
    true_val, _tol = intg.quad(f, a, b)
    print('true value = %12.8f' % (true_val,))
    kmax = 9
    neval = zeros(kmax, dtype=int)
    qt = zeros(kmax)
    qs = zeros(kmax)
    qb = zeros(kmax)
    qc = zeros(kmax)
    qc2 = zeros(kmax)
    qg = zeros(kmax)

    et = ones(kmax)
    es = ones(kmax)
    eb = ones(kmax)
    ec = ones(kmax)
    ec2 = ones(kmax)
    ec3 = ones(kmax)
    eg = ones(kmax)
    # try various approximations

    for k in xrange(kmax):
        n = 2 ** (k + 1) + 1
        neval[k] = n
        h = (b - a) / (n - 1)
        x = np.linspace(a, b, n)
        y = f(x)

        # trapezoid approximation
        q = np.trapz(y, x)
        #h*( (y(1)+y(n))/2 + sum(y(2:n-1)) )
        qt[k] = q
        et[k] = abs(q - true_val)
        # Simpson approximation
        q = intg.simps(y, x)
        #(h/3)*( y(1)+y(n) + 4*sum(y(2:2:n-1)) + 2*sum(y(3:2:n-2)) )
        qs[k] = q
        es[k] = abs(q - true_val)
        # Boole's rule
        #q = boole(x,y)
        q = (2 * h / 45) * (7 * (y[0] + y[-1]) + 12 * np.sum(y[2:n - 1:4])
           + 32 * np.sum(y[1:n - 1:2]) + 14 * np.sum(y[4:n - 3:4]))
        qb[k] = q
        eb[k] = abs(q - true_val)

        # Clenshaw-Curtis
        [q, ec3[k]] = clencurt(f, a, b, (n - 1) / 2)
        qc[k] = q
        ec[k] = abs(q - true_val)

        # Chebychev
        #ck = chebfit(f,n,a,b)
        #q  = chebval(b,chebint(ck,a,b),a,b)
        #qc2[k] = q; ec2[k] = abs(q - true)

        # Gauss-Legendre quadrature
        q = intg.fixed_quad(f, a, b, n=n)[0]
        #[x, w]=qrule(n,1)
        #x = (b-a)/2*x + (a+b)/2     % Transform base points X.
        #w = (b-a)/2*w               % Adjust weigths.
        #q = sum(feval(f,x)*w)
        qg[k] = q
        eg[k] = abs(q - true_val)


    #% display results
    formats = ['%4.0f, ', ] + ['%10.10f, ', ]*6
    formats[-1] = formats[-1].split(',')[0]
    data = np.vstack((neval, qt, et, qs, es, qb, eb)).T
    print(' ftn         Trapezoid                  Simpson''s                   Boole''s')
    print('evals    approx       error          approx       error           approx        error')
   
    for k in xrange(kmax):
        tmp = data[k].tolist()
        print(''.join(fi % t for fi, t in zip(formats, tmp)))
      
    # display results
    data = np.vstack((neval, qc, ec, qc2, ec2, qg, eg)).T
    print(' ftn         Clenshaw                    Chebychev                    Gauss-L')
    print('evals    approx       error          approx       error           approx        error')
    for k in xrange(kmax):
        tmp = data[k].tolist()
        print(''.join(fi % t for fi, t in zip(formats, tmp)))
      

    plt.loglog(neval, np.vstack((et, es, eb, ec, ec2, eg)).T)
    plt.xlabel('number of function evaluations')
    plt.ylabel('error')
    plt.legend(('Trapezoid', 'Simpsons', 'Booles', 'Clenshaw', 'Chebychev', 'Gauss-L'))
Esempio n. 9
0
def demo_tide_filter():
    """
    Examples
    --------
    >>> demo_tide_filter()

    >>> plt.close()
    """
    # import statsmodels.api as sa
    import wafo.spectrum.models as sm
    sd = 10
    Sj = sm.Jonswap(Hm0=4. * sd)
    S = Sj.tospecdata()

    q = (0.1 * sd)**2  # variance of process noise s the car operates
    r = (100 * sd)**2  # variance of measurement error
    b = 0  # no system input
    u = 0  # no system input

    from scipy.signal import butter, filtfilt, lfilter_zi  # lfilter,
    freq_tide = 1. / (12 * 60 * 60)
    freq_wave = 1. / 10
    freq_filt = freq_wave / 10
    dt = 1.
    freq = 1. / dt
    fn = (freq / 2)

    P = 10 * np.diag([1, 0.01])
    R = r
    H = np.atleast_2d([1, 0])

    F = np.atleast_2d([[0, 1], [0, 0]])
    A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)

    t = np.arange(0, 60 * 12, 1. / freq)
    w = 2 * np.pi * freq  # 1 Hz
    tide = 100 * np.sin(freq_tide * w * t + 2 * np.pi / 4) + 100
    y = tide + S.sim(len(t), dt=1. / freq)[:, 1].ravel()
    #     lowess = sa.nonparametric.lowess
    #     y2 = lowess(y, t, frac=0.5)[:,1]

    filt = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
    filt2 = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
    # y = tide + 0.5 * np.sin(freq_wave * w * t)
    # Butterworth filter
    b, a = butter(9, (freq_filt / fn), btype='low')
    # y2 = [lowess(y[max(i-60,0):i + 1], t[max(i-60,0):i + 1], frac=.3)[-1,1]
    #    for i in range(len(y))]
    # y2 = [lfilter(b, a, y[:i + 1])[i] for i in range(len(y))]
    # y3 = filtfilt(b, a, y[:16]).tolist() + [filtfilt(b, a, y[:i + 1])[i]
    #    for i in range(16, len(y))]
    # y0 = medfilt(y, 41)
    _zi = lfilter_zi(b, a)
    # y2 = lfilter(b, a, y)#, zi=y[0]*zi)  # standard filter
    y3 = filtfilt(b, a, y)  # filter with phase shift correction
    y4 = []
    y5 = []
    for _i, j in enumerate(y):
        tmp = np.ravel(filt(j, u=u))
        tmp = np.ravel(filt2(tmp[0], u=u))
        #         if i==0:
        #             print(filt.x)
        #             print(filt2.x)
        y4.append(tmp[0])
        y5.append(tmp[1])
    _y0 = medfilt(y4, 41)
    # print(filt.P)
    # plot

    plt.plot(t, y, 'r.-', linewidth=2, label='raw data')
    # plt.plot(t, y2, 'b.-', linewidth=2, label='lowess @ %g Hz' % freq_filt)
    # plt.plot(t, y2, 'b.-', linewidth=2, label='filter @ %g Hz' % freq_filt)
    plt.plot(t, y3, 'g.-', linewidth=2, label='filtfilt @ %g Hz' % freq_filt)
    plt.plot(t, y4, 'k.-', linewidth=2, label='kalman')
    # plt.plot(t, y5, 'k.', linewidth=2, label='kalman2')
    plt.plot(t, tide, 'y-', linewidth=2, label='True tide')
    plt.legend(frameon=False, fontsize=14)
    plt.xlabel("Time [s]")
    plt.ylabel("Amplitude")
Esempio n. 10
0
def qdemo(f, a, b, kmax=9, plot_error=False):
    '''
    Compares different quadrature rules.

    Parameters
    ----------
    f : callable
        function
    a,b : scalars
        lower and upper integration limits

    Details
    -------
    qdemo(f,a,b) computes and compares various approximations to
    the integral of f from a to b.  Three approximations are used,
    the composite trapezoid, Simpson's, and Boole's rules, all with
    equal length subintervals.
    In a case like qdemo(exp,0,3) one can see the expected
    convergence rates for each of the three methods.
    In a case like qdemo(sqrt,0,3), the convergence rate is limited
    not by the method, but by the singularity of the integrand.

    Example
    -------
    >>> import numpy as np
    >>> qdemo(np.exp,0,3)
    true value =  19.08553692
     ftn,                Boole,            Chebychev
    evals       approx        error       approx        error
       3, 19.4008539142, 0.3153169910, 19.5061466023, 0.4206096791
       5, 19.0910191534, 0.0054822302, 19.0910191534, 0.0054822302
       9, 19.0856414320, 0.0001045088, 19.0855374134, 0.0000004902
      17, 19.0855386464, 0.0000017232, 19.0855369232, 0.0000000000
      33, 19.0855369505, 0.0000000273, 19.0855369232, 0.0000000000
      65, 19.0855369236, 0.0000000004, 19.0855369232, 0.0000000000
     129, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
     257, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
     513, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
     ftn,      Clenshaw-Curtis,       Gauss-Legendre
    evals       approx        error       approx        error
       3, 19.5061466023, 0.4206096791, 19.0803304585, 0.0052064647
       5, 19.0834145766, 0.0021223465, 19.0855365951, 0.0000003281
       9, 19.0855369150, 0.0000000082, 19.0855369232, 0.0000000000
      17, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
      33, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
      65, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
     129, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
     257, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
     513, 19.0855369232, 0.0000000000, 19.0855369232, 0.0000000000
     ftn,                Simps,                Trapz
    evals       approx        error       approx        error
       3, 19.5061466023, 0.4206096791, 22.5366862979, 3.4511493747
       5, 19.1169646189, 0.0314276957, 19.9718950387, 0.8863581155
       9, 19.0875991312, 0.0020622080, 19.3086731081, 0.2231361849
      17, 19.0856674267, 0.0001305035, 19.1414188470, 0.0558819239
      33, 19.0855451052, 0.0000081821, 19.0995135407, 0.0139766175
      65, 19.0855374350, 0.0000005118, 19.0890314614, 0.0034945382
     129, 19.0855369552, 0.0000000320, 19.0864105817, 0.0008736585
     257, 19.0855369252, 0.0000000020, 19.0857553393, 0.0002184161
     513, 19.0855369233, 0.0000000001, 19.0855915273, 0.0000546041
    '''
    true_val, _tol = intg.quad(f, a, b)
    print('true value = %12.8f' % (true_val,))
    neval = zeros(kmax, dtype=int)
    vals_dic = {}
    err_dic = {}

    # try various approximations
    methods = [trapz, simps, boole, ]

    for k in xrange(kmax):
        n = 2 ** (k + 1) + 1
        neval[k] = n
        x = np.linspace(a, b, n)
        y = f(x)
        for method in methods:
            name = method.__name__.title()
            q = method(y, x)
            vals_dic.setdefault(name, []).append(q)
            err_dic.setdefault(name, []).append(abs(q - true_val))

        name = 'Clenshaw-Curtis'
        q, _ec3 = clencurt(f, a, b, (n - 1) / 2)
        vals_dic.setdefault(name, []).append(q[0])
        err_dic.setdefault(name, []).append(abs(q[0] - true_val))

        name = 'Chebychev'
        ck = np.polynomial.chebyshev.chebfit(x, y, deg=min(n-1, 36))
        cki = np.polynomial.chebyshev.chebint(ck)
        q = np.polynomial.chebyshev.chebval(x[-1], cki)
        vals_dic.setdefault(name, []).append(q)
        err_dic.setdefault(name, []).append(abs(q - true_val))
        # ck = chebfit(f,n,a,b)
        # q  = chebval(b,chebint(ck,a,b),a,b)
        # qc2[k] = q; ec2[k] = abs(q - true)

        name = 'Gauss-Legendre'  # quadrature
        q = intg.fixed_quad(f, a, b, n=n)[0]
        # [x, w]=qrule(n,1)
        # x = (b-a)/2*x + (a+b)/2     % Transform base points X.
        # w = (b-a)/2*w               % Adjust weigths.
        # q = sum(feval(f,x)*w)
        vals_dic.setdefault(name, []).append(q)
        err_dic.setdefault(name, []).append(abs(q - true_val))

    # display results
    names = sorted(vals_dic.keys())
    num_cols = 2
    formats = ['%4.0f, ', ] + ['%10.10f, ', ] * num_cols * 2
    formats[-1] = formats[-1].split(',')[0]
    formats_h = ['%4s, ', ] + ['%20s, ', ] * num_cols
    formats_h[-1] = formats_h[-1].split(',')[0]
    headers = ['evals'] + ['%12s %12s' % ('approx', 'error')] * num_cols
    while len(names) > 0:
        print(''.join(fi % t for fi, t in zip(formats_h,
                                              ['ftn'] + names[:num_cols])))
        print(' '.join(headers))

        data = [neval]
        for name in names[:num_cols]:
            data.append(vals_dic[name])
            data.append(err_dic[name])
        data = np.vstack(tuple(data)).T
        for k in xrange(kmax):
            tmp = data[k].tolist()
            print(''.join(fi % t for fi, t in zip(formats, tmp)))
        if plot_error:
            plt.figure(0)
            for name in names[:num_cols]:
                plt.loglog(neval, err_dic[name], label=name)

        names = names[num_cols:]
    if plot_error:
        plt.xlabel('number of function evaluations')
        plt.ylabel('error')
        plt.legend()
        plt.show('hold')
Esempio n. 11
0
def test_tide_filter():
    # import statsmodels.api as sa
    import wafo.spectrum.models as sm
    sd = 10
    Sj = sm.Jonswap(Hm0=4.*sd)
    S = Sj.tospecdata()

    q = (0.1 * sd) ** 2   # variance of process noise s the car operates
    r = (100 * sd) ** 2  # variance of measurement error
    b = 0  # no system input
    u = 0  # no system input

    from scipy.signal import butter, filtfilt, lfilter_zi  # lfilter,
    freq_tide = 1. / (12 * 60 * 60)
    freq_wave = 1. / 10
    freq_filt = freq_wave / 10
    dt = 1.
    freq = 1. / dt
    fn = (freq / 2)

    P = 10 * np.diag([1, 0.01])
    R = r
    H = np.atleast_2d([1, 0])

    F = np.atleast_2d([[0, 1],
                       [0, 0]])
    A, Q = lti_disc(F, L=None, Q=np.diag([0, q]), dt=dt)

    t = np.arange(0, 60 * 12, 1. / freq)
    w = 2 * np.pi * freq  # 1 Hz
    tide = 100 * np.sin(freq_tide * w * t + 2 * np.pi / 4) + 100
    y = tide + S.sim(len(t), dt=1. / freq)[:, 1].ravel()
#     lowess = sa.nonparametric.lowess
#     y2 = lowess(y, t, frac=0.5)[:,1]

    filt = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
    filt2 = Kalman(R=R, x=np.array([[tide[0]], [0]]), P=P, A=A, Q=Q, H=H, B=b)
    # y = tide + 0.5 * np.sin(freq_wave * w * t)
    # Butterworth filter
    b, a = butter(9, (freq_filt / fn), btype='low')
    # y2 = [lowess(y[max(i-60,0):i + 1], t[max(i-60,0):i + 1], frac=.3)[-1,1]
    #    for i in range(len(y))]
    # y2 = [lfilter(b, a, y[:i + 1])[i] for i in range(len(y))]
    # y3 = filtfilt(b, a, y[:16]).tolist() + [filtfilt(b, a, y[:i + 1])[i]
    #    for i in range(16, len(y))]
    # y0 = medfilt(y, 41)
    _zi = lfilter_zi(b, a)
    # y2 = lfilter(b, a, y)#, zi=y[0]*zi)  # standard filter
    y3 = filtfilt(b, a, y)  # filter with phase shift correction
    y4 = []
    y5 = []
    for _i, j in enumerate(y):
        tmp = filt(j, u=u).ravel()
        tmp = filt2(tmp[0], u=u).ravel()
#         if i==0:
#             print(filt.x)
#             print(filt2.x)
        y4.append(tmp[0])
        y5.append(tmp[1])
    _y0 = medfilt(y4, 41)
    print(filt.P)
    # plot

    plt.plot(t, y, 'r.-', linewidth=2, label='raw data')
    # plt.plot(t, y2, 'b.-', linewidth=2, label='lowess @ %g Hz' % freq_filt)
    # plt.plot(t, y2, 'b.-', linewidth=2, label='filter @ %g Hz' % freq_filt)
    plt.plot(t, y3, 'g.-', linewidth=2, label='filtfilt @ %g Hz' % freq_filt)
    plt.plot(t, y4, 'k.-', linewidth=2, label='kalman')
    # plt.plot(t, y5, 'k.', linewidth=2, label='kalman2')
    plt.plot(t, tide, 'y-', linewidth=2, label='True tide')
    plt.legend(frameon=False, fontsize=14)
    plt.xlabel("Time [s]")
    plt.ylabel("Amplitude")
    plt.show('hold')