Esempio n. 1
0
 def test_raise_value_error_on_empty_anchor_genertor(self):
     anchor_generator_text_proto = """
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     with self.assertRaises(ValueError):
         anchor_generator_builder.build(anchor_generator_proto)
Esempio n. 2
0
 def test_build_ssd_anchor_generator_with_defaults(self):
     anchor_generator_text_proto = """
   ssd_anchor_generator {
     aspect_ratios: [1.0]
   }
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertIsInstance(
         anchor_generator_object,
         multiple_grid_anchor_generator.MultipleGridAnchorGenerator)
     for actual_scales, expected_scales in zip(
             list(anchor_generator_object._scales), [(0.1, 0.2, 0.2),
                                                     (0.35, 0.418),
                                                     (0.499, 0.570),
                                                     (0.649, 0.721),
                                                     (0.799, 0.871),
                                                     (0.949, 0.974)]):
         self.assert_almost_list_equal(expected_scales,
                                       actual_scales,
                                       delta=1e-2)
     for actual_aspect_ratio, expected_aspect_ratio in zip(
             list(anchor_generator_object._aspect_ratios),
         [(1.0, 2.0, 0.5)] + 5 * [(1.0, 1.0)]):
         self.assert_almost_list_equal(expected_aspect_ratio,
                                       actual_aspect_ratio)
     self.assertAllClose(anchor_generator_object._base_anchor_size,
                         [1.0, 1.0])
Esempio n. 3
0
 def test_build_grid_anchor_generator_with_non_default_parameters(self):
     anchor_generator_text_proto = """
   grid_anchor_generator {
     height: 128
     width: 512
     height_stride: 10
     width_stride: 20
     height_offset: 30
     width_offset: 40
     scales: [0.4, 2.2]
     aspect_ratios: [0.3, 4.5]
   }
  """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertIsInstance(anchor_generator_object,
                           grid_anchor_generator.GridAnchorGenerator)
     self.assert_almost_list_equal(anchor_generator_object._scales,
                                   [0.4, 2.2])
     self.assert_almost_list_equal(anchor_generator_object._aspect_ratios,
                                   [0.3, 4.5])
     self.assertAllEqual(anchor_generator_object._anchor_offset, [30, 40])
     self.assertAllEqual(anchor_generator_object._anchor_stride, [10, 20])
     self.assertAllEqual(anchor_generator_object._base_anchor_size,
                         [128, 512])
Esempio n. 4
0
 def test_build_multiscale_anchor_generator_custom_aspect_ratios(self):
     anchor_generator_text_proto = """
   multiscale_anchor_generator {
     aspect_ratios: [1.0]
   }
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertIsInstance(
         anchor_generator_object,
         multiscale_grid_anchor_generator.MultiscaleGridAnchorGenerator)
     for level, anchor_grid_info in zip(
             range(3, 8), anchor_generator_object._anchor_grid_info):
         self.assertEqual(set(anchor_grid_info.keys()),
                          set(['level', 'info']))
         self.assertTrue(level, anchor_grid_info['level'])
         self.assertEqual(len(anchor_grid_info['info']), 4)
         self.assertAllClose(anchor_grid_info['info'][0], [2**0, 2**0.5])
         self.assertTrue(anchor_grid_info['info'][1], 1.0)
         self.assertAllClose(anchor_grid_info['info'][2],
                             [4.0 * 2**level, 4.0 * 2**level])
         self.assertAllClose(anchor_grid_info['info'][3],
                             [2**level, 2**level])
         self.assertTrue(anchor_generator_object._normalize_coordinates)
Esempio n. 5
0
    def test_build_flexible_anchor_generator(self):
        anchor_generator_text_proto = """
      flexible_grid_anchor_generator {
        anchor_grid {
          base_sizes: [1.5]
          aspect_ratios: [1.0]
          height_stride: 16
          width_stride: 20
          height_offset: 8
          width_offset: 9
        }
        anchor_grid {
          base_sizes: [1.0, 2.0]
          aspect_ratios: [1.0, 0.5]
          height_stride: 32
          width_stride: 30
          height_offset: 10
          width_offset: 11
        }
      }
    """
        anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
        text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
        anchor_generator_object = anchor_generator_builder.build(
            anchor_generator_proto)
        self.assertIsInstance(
            anchor_generator_object,
            flexible_grid_anchor_generator.FlexibleGridAnchorGenerator)

        for actual_base_sizes, expected_base_sizes in zip(
                list(anchor_generator_object._base_sizes), [(1.5, ),
                                                            (1.0, 2.0)]):
            self.assert_almost_list_equal(expected_base_sizes,
                                          actual_base_sizes)

        for actual_aspect_ratios, expected_aspect_ratios in zip(
                list(anchor_generator_object._aspect_ratios), [(1.0, ),
                                                               (1.0, 0.5)]):
            self.assert_almost_list_equal(expected_aspect_ratios,
                                          actual_aspect_ratios)

        for actual_strides, expected_strides in zip(
                list(anchor_generator_object._anchor_strides), [(16, 20),
                                                                (32, 30)]):
            self.assert_almost_list_equal(expected_strides, actual_strides)

        for actual_offsets, expected_offsets in zip(
                list(anchor_generator_object._anchor_offsets), [(8, 9),
                                                                (10, 11)]):
            self.assert_almost_list_equal(expected_offsets, actual_offsets)

        self.assertTrue(anchor_generator_object._normalize_coordinates)
Esempio n. 6
0
    def test_build_ssd_anchor_generator_with_non_default_parameters(self):
        anchor_generator_text_proto = """
      ssd_anchor_generator {
        num_layers: 2
        min_scale: 0.3
        max_scale: 0.8
        aspect_ratios: [2.0]
        height_stride: 16
        height_stride: 32
        width_stride: 20
        width_stride: 30
        height_offset: 8
        height_offset: 16
        width_offset: 0
        width_offset: 10
      }
    """
        anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
        text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
        anchor_generator_object = anchor_generator_builder.build(
            anchor_generator_proto)
        self.assertIsInstance(
            anchor_generator_object,
            multiple_grid_anchor_generator.MultipleGridAnchorGenerator)

        for actual_scales, expected_scales in zip(
                list(anchor_generator_object._scales), [(0.1, 0.3, 0.3),
                                                        (0.8, 0.894)]):
            self.assert_almost_list_equal(expected_scales,
                                          actual_scales,
                                          delta=1e-2)

        for actual_aspect_ratio, expected_aspect_ratio in zip(
                list(anchor_generator_object._aspect_ratios), [(1.0, 2.0, 0.5),
                                                               (2.0, 1.0)]):
            self.assert_almost_list_equal(expected_aspect_ratio,
                                          actual_aspect_ratio)

        for actual_strides, expected_strides in zip(
                list(anchor_generator_object._anchor_strides), [(16, 20),
                                                                (32, 30)]):
            self.assert_almost_list_equal(expected_strides, actual_strides)

        for actual_offsets, expected_offsets in zip(
                list(anchor_generator_object._anchor_offsets), [(8, 0),
                                                                (16, 10)]):
            self.assert_almost_list_equal(expected_offsets, actual_offsets)

        self.assertAllClose(anchor_generator_object._base_anchor_size,
                            [1.0, 1.0])
Esempio n. 7
0
 def test_build_multiscale_anchor_generator_with_anchors_in_pixel_coordinates(
         self):
     anchor_generator_text_proto = """
   multiscale_anchor_generator {
     aspect_ratios: [1.0]
     normalize_coordinates: false
   }
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertIsInstance(
         anchor_generator_object,
         multiscale_grid_anchor_generator.MultiscaleGridAnchorGenerator)
     self.assertFalse(anchor_generator_object._normalize_coordinates)
Esempio n. 8
0
 def test_build_grid_anchor_generator_with_defaults(self):
     anchor_generator_text_proto = """
   grid_anchor_generator {
   }
  """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertIsInstance(anchor_generator_object,
                           grid_anchor_generator.GridAnchorGenerator)
     self.assertListEqual(anchor_generator_object._scales, [])
     self.assertListEqual(anchor_generator_object._aspect_ratios, [])
     self.assertAllEqual(anchor_generator_object._anchor_offset, [0, 0])
     self.assertAllEqual(anchor_generator_object._anchor_stride, [16, 16])
     self.assertAllEqual(anchor_generator_object._base_anchor_size,
                         [256, 256])
Esempio n. 9
0
 def test_build_ssd_anchor_generator_with_custom_interpolated_scale(self):
     anchor_generator_text_proto = """
   ssd_anchor_generator {
     aspect_ratios: [0.5]
     interpolated_scale_aspect_ratio: 0.5
     reduce_boxes_in_lowest_layer: false
   }
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertIsInstance(
         anchor_generator_object,
         multiple_grid_anchor_generator.MultipleGridAnchorGenerator)
     for actual_aspect_ratio, expected_aspect_ratio in zip(
             list(anchor_generator_object._aspect_ratios),
             6 * [(0.5, 0.5)]):
         self.assert_almost_list_equal(expected_aspect_ratio,
                                       actual_aspect_ratio)
Esempio n. 10
0
 def test_build_ssd_anchor_generator_with_custom_scales(self):
     anchor_generator_text_proto = """
   ssd_anchor_generator {
     aspect_ratios: [1.0]
     scales: [0.1, 0.15, 0.2, 0.4, 0.6, 0.8]
     reduce_boxes_in_lowest_layer: false
   }
 """
     anchor_generator_proto = anchor_generator_pb2.AnchorGenerator()
     text_format.Merge(anchor_generator_text_proto, anchor_generator_proto)
     anchor_generator_object = anchor_generator_builder.build(
         anchor_generator_proto)
     self.assertIsInstance(
         anchor_generator_object,
         multiple_grid_anchor_generator.MultipleGridAnchorGenerator)
     for actual_scales, expected_scales in zip(
             list(anchor_generator_object._scales),
         [(0.1, math.sqrt(0.1 * 0.15)), (0.15, math.sqrt(0.15 * 0.2)),
          (0.2, math.sqrt(0.2 * 0.4)), (0.4, math.sqrt(0.4 * 0.6)),
          (0.6, math.sqrt(0.6 * 0.8)), (0.8, math.sqrt(0.8 * 1.0))]):
         self.assert_almost_list_equal(expected_scales,
                                       actual_scales,
                                       delta=1e-2)
Esempio n. 11
0
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
      desired FasterRCNNMetaArch or RFCNMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    FasterRCNNMetaArch based on the config.

  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)

  is_keras = (frcnn_config.feature_extractor.type in
              FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP)

  if is_keras:
    feature_extractor = _build_faster_rcnn_keras_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
  else:
    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)

  number_of_stages = frcnn_config.number_of_stages
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
  if is_keras:
    first_stage_box_predictor_arg_scope_fn = (
        hyperparams_builder.KerasLayerHyperparams(
            frcnn_config.first_stage_box_predictor_conv_hyperparams))
  else:
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
  use_static_shapes = frcnn_config.use_static_shapes and (
      frcnn_config.use_static_shapes_for_eval or is_training)
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
  if (frcnn_config.first_stage_nms_iou_threshold < 0 or
      frcnn_config.first_stage_nms_iou_threshold > 1.0):
    raise ValueError('iou_threshold not in [0, 1.0].')
  if (is_training and frcnn_config.second_stage_batch_size >
      first_stage_max_proposals):
    raise ValueError('second_stage_batch_size should be no greater than '
                     'first_stage_max_proposals.')
  first_stage_non_max_suppression_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=frcnn_config.first_stage_nms_score_threshold,
      iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
      max_size_per_class=frcnn_config.first_stage_max_proposals,
      max_total_size=frcnn_config.first_stage_max_proposals,
      use_static_shapes=use_static_shapes)
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
  if is_keras:
    second_stage_box_predictor = box_predictor_builder.build_keras(
        hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=[1],
        box_predictor_config=frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  else:
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  second_stage_batch_size = frcnn_config.second_stage_batch_size
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

  crop_and_resize_fn = (
      ops.matmul_crop_and_resize if frcnn_config.use_matmul_crop_and_resize
      else ops.native_crop_and_resize)
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)

  common_kwargs = {
      'is_training': is_training,
      'num_classes': num_classes,
      'image_resizer_fn': image_resizer_fn,
      'feature_extractor': feature_extractor,
      'number_of_stages': number_of_stages,
      'first_stage_anchor_generator': first_stage_anchor_generator,
      'first_stage_target_assigner': first_stage_target_assigner,
      'first_stage_atrous_rate': first_stage_atrous_rate,
      'first_stage_box_predictor_arg_scope_fn':
      first_stage_box_predictor_arg_scope_fn,
      'first_stage_box_predictor_kernel_size':
      first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth': first_stage_box_predictor_depth,
      'first_stage_minibatch_size': first_stage_minibatch_size,
      'first_stage_sampler': first_stage_sampler,
      'first_stage_non_max_suppression_fn': first_stage_non_max_suppression_fn,
      'first_stage_max_proposals': first_stage_max_proposals,
      'first_stage_localization_loss_weight': first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight': first_stage_obj_loss_weight,
      'second_stage_target_assigner': second_stage_target_assigner,
      'second_stage_batch_size': second_stage_batch_size,
      'second_stage_sampler': second_stage_sampler,
      'second_stage_non_max_suppression_fn':
      second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn': second_stage_score_conversion_fn,
      'second_stage_localization_loss_weight':
      second_stage_localization_loss_weight,
      'second_stage_classification_loss':
      second_stage_classification_loss,
      'second_stage_classification_loss_weight':
      second_stage_classification_loss_weight,
      'hard_example_miner': hard_example_miner,
      'add_summaries': add_summaries,
      'crop_and_resize_fn': crop_and_resize_fn,
      'clip_anchors_to_image': clip_anchors_to_image,
      'use_static_shapes': use_static_shapes,
      'resize_masks': frcnn_config.resize_masks
  }

  if (isinstance(second_stage_box_predictor,
                 rfcn_box_predictor.RfcnBoxPredictor) or
      isinstance(second_stage_box_predictor,
                 rfcn_keras_box_predictor.RfcnKerasBoxPredictor)):
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
        **common_kwargs)
Esempio n. 12
0
def _build_ssd_model(ssd_config, is_training, add_summaries):
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.
  Returns:
    SSDMetaArch based on the config.

  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes

  # Feature extractor
  feature_extractor = _build_ssd_feature_extractor(
      feature_extractor_config=ssd_config.feature_extractor,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      is_training=is_training)

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
  negative_class_weight = ssd_config.negative_class_weight
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
      negative_class_weight=negative_class_weight)

  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
  kwargs = {}

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
      target_assigner_instance=target_assigner_instance,
      add_summaries=add_summaries,
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
      add_background_class=ssd_config.add_background_class,
      explicit_background_class=ssd_config.explicit_background_class,
      random_example_sampler=random_example_sampler,
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
      **kwargs)