def main(graph_file_name, path_file_name):
    g = Graph()
    print("Reading...")

    g.read_edgelist(filename=graph_file_name)

    walker_class = walker.BasicWalker(g, workers=8)
    sentences = walker_class.simulate_walks(
            num_walks=10, walk_length=10)
    fw = codecs.open(path_file_name, "w", "utf-8")
    for path in sentences:
        for i in range(0, len(path)):
            if i < len(path) - 1:
                fw.write(str(path[i] + " "))
            else:
                fw.write(str(path[i] + "\n"))
    fw.close()
Esempio n. 2
0
    def __init__(self,
                 graph,
                 path_length,
                 num_paths,
                 dim,
                 p=1.0,
                 q=1.0,
                 dw=False,
                 **kwargs):

        kwargs["workers"] = kwargs.get("workers", 1)
        if dw:
            kwargs["hs"] = 1
            p = 1.0
            q = 1.0

        self.graph = graph
        if dw:
            self.walker = walker.BasicWalker(graph, workers=kwargs["workers"])
        else:
            self.walker = walker.Walker(graph,
                                        p=p,
                                        q=q,
                                        workers=kwargs["workers"])
            # self.walker = walker.QuantumWalker(graph, p=p, q=q, workers=kwargs["workers"])
            print("Preprocess transition probs...")
            self.walker.preprocess_transition_probs()
        sentences = self.walker.simulate_walks(num_walks=num_paths,
                                               walk_length=path_length)
        kwargs["sentences"] = sentences
        kwargs["min_count"] = kwargs.get("min_count", 0)
        kwargs["size"] = kwargs.get("size", dim)
        kwargs["sg"] = 1

        self.size = kwargs["size"]
        print("Learning representation...")
        word2vec = Word2Vec(**kwargs)
        self.vectors = {}
        self.embeddings = np.zeros((graph.node_size, dim))
        for word in graph.G.nodes():
            self.vectors[word] = word2vec[word]
            self.embeddings[graph.look_up_dict[word]] = word2vec[word]
        del word2vec
Esempio n. 3
0
    def __init__(self,
                 graph,
                 path_length,
                 num_paths,
                 dim,
                 p=1.0,
                 q=1.0,
                 dw=0,
                 **kwargs):

        kwargs["workers"] = kwargs.get("workers", 1)
        if dw:
            kwargs["hs"] = 1
            p = 1.0
            q = 1.0

        self.graph = graph
        if dw == 1:
            self.walker = walker.BasicWalker(graph, workers=kwargs["workers"])
        elif dw == 2:
            self.walker = walker.MHWalker(graph, workers=kwargs["workers"])
        else:
            self.walker = walker.Walker(graph,
                                        p=p,
                                        q=q,
                                        workers=kwargs["workers"])
            print("Preprocess transition probs...")
            self.walker.preprocess_transition_probs()
        sentences = self.walker.simulate_walks(num_walks=num_paths,
                                               walk_length=path_length)
        kwargs["sentences"] = sentences
        kwargs["min_count"] = kwargs.get("min_count", 0)
        kwargs["size"] = kwargs.get("size", dim)
        kwargs["sg"] = 1

        self.size = kwargs["size"]
        print("Learning representation...")
        word2vec = Word2Vec(**kwargs)
        self.vectors = {}
        for word in graph.G.nodes():
            self.vectors[word] = word2vec.wv[word]
        del word2vec
Esempio n. 4
0
    def __init__(self, graph, path_length, num_paths, dim, p=1.0, q=1.0, dw=False,  **kwargs):
        kwargs["workers"] = kwargs.get("workers", 5)
        if dw:
            kwargs["hs"] = 0
            p = 1.0
            q = 1.0
        t1 = time.time()
        self.graph = graph
        if dw:
            self.walker = walker.BasicWalker(graph, workers=kwargs["workers"],walk_length=path_length)
            t2 = time.time()
            self.walker.preprocess_transition_probs()
            t3 = time.time()
            print("prob time: "+str(t3-t2))
            sentences = self.walker.simulate_walks(num_walks=num_paths, walk_length=path_length)
        else:
            self.walker = walker.Walker(
                graph, p=p, q=q, workers=kwargs["workers"])
            t2 = time.time()
            self.walker.preprocess_transition_probs()
            t3 = time.time()
            print("prob time: "+str(t3-t2))
            sentences = self.walker.simulate_walks(num_walks=num_paths, walk_length=path_length)
        t2 = time.time()
        print("walking time: "+str(t2-t1))
        kwargs["sentences"] = sentences
        kwargs["min_count"] = kwargs.get("min_count", 0)
        kwargs["size"] = kwargs.get("size", dim)
        kwargs["sg"] = 1

        self.size = kwargs["size"]
#        print("Learning representation...")
        word2vec = Word2Vec(**kwargs)
        self.vectors = {}
        for word in graph.G.nodes():
            self.vectors[word] = word2vec.wv[word]
        del word2vec