Esempio n. 1
0
def main():
    """
    The main function
    """
    graph = watersprinkler.main()
    nbr_samples = 1000
    # sample the network N times
    cases = graph.sample(nbr_samples)  
    # create a new bayesian network with all parameters set to 1
    graph_copy = deepcopy(graph)
    graph_copy.init_distributions()
    # Learn the parameters from the set of cases
    engine = learning.MLLearningEngine(graph_copy)
    # cases = engine.read_file('file.xls') #To use the data of file.xls
    start_time = time()
    engine.learn_ml_params(cases)
    print 'Learned from %d cases in %1.3f secs' % \
          (nbr_samples, (time() - start_time))

    # print the learned parameters
    for vertex in graph_copy.all_v: 
        print vertex.name, vertex.distribution.cpt,'\n'

    # print the parameters
    for vertex in graph.all_v: 
        print vertex.distribution,'\n'
def main():
    """
    The main function
    """
    graph = watersprinkler.main()
    # create an inference Engine
    # choose the one you like by commenting/uncommenting the appropriate line
    engine = JoinTree(graph)
    #ie = MCMCEngine(G)
    
    # perform inference with no evidence
    results = engine.marginalise_all()
    
    print '=============================================================='
    print 'Without evidence:\n'
    for name, res in results.items():
        print name, res, '\n'
    
    print '=============================================================='
    print 'With evidence:\n'
    
    # add some evidence
    engine.set_obs({'s':1})    # s=1
    
    # perform inference with evidence
    results = engine.marginalise_all()
    
    # notice that the JoinTree engine does not perform a full message pass 
    # but only distributes the new evidence...
    for res in results.values(): 
        print res, '\n'
Esempio n. 3
0
def main():
    """
    This is the main function
    """
    graph = watersprinkler.main()
    nbr_samples = 2000
    # sample the network N times
    # cases = [{'c':0,'s':1,'r':0,'w':1},{...},...]
    cases = graph.sample(nbr_samples)    
    # delete some observations
    for i in range(500):
        case = cases[3*i]
        rand = random.sample(['c', 's', 'r', 'w'], 1)[0]
        case[rand] = '?' 
    for i in range(50):
        case = cases[3*i]
        rand = random.sample(['c', 's', 'r', 'w'], 1)[0]
        case[rand] = '?'
    
    # copy the BN
    graph_copy = deepcopy(graph)
    # set all parameters to 1s
    graph_copy.init_distributions()
    # Learn the parameters from the set of cases
    engine = learning.EMLearningEngine(graph_copy)
    # cases = engine.read_file('file.xls') #To use the data of file.xls
    start_time = time()
    engine.em_learning(cases, 10)
    print 'Learned from %d cases in %1.3f secs' % \
          (nbr_samples, (time() - start_time))
    
    # print the learned parameters
    print "Learned paramters"
    for vertex in graph_copy.all_v: 
        print vertex.name, vertex.distribution.cpt, '\n'
    ### print the parameters 
    print "Orignal Parameters"   
    for vertex in graph.all_v: 
        print vertex.name, vertex.distribution.cpt, '\n'
def main():
    """
    This is the main function
    """
    graph = watersprinkler.main()
    nbr_samples = 2000
    # sample the network several times
    cases = graph.sample(nbr_samples)   
    # delete some observations
    for i in range(500):
        case = cases[3*i]
        rand = random.sample(['c', 's', 'r', 'w'], 1)[0]
        case[rand] = '?' 
    for i in range(50):
        case = cases[3*i]
        rand = random.sample(['c', 's', 'r', 'w'], 1)[0]
        case[rand] = '?'
        
# Create a new BNet with no edgraphes
    graph_copy = bayesnet.BNet('Water Sprinkler Bayesian Network2')
    for name in "c s r w".split():
        graph_copy.add_v(bayesnet.BVertex(name, True, 2)) 
    graph_copy.init_distributions()

# Learn the structure
    struct_engine = learning.SEMLearningEngine(graph_copy)
    struct_engine.sem_learning(cases)
    print 'learned structure: ', struct_engine.network
    print 'total bic score: ', \
          struct_engine.global_bic_score(nbr_samples, cases, 0)

# Learn the structure
    struct_engine = learning.SEMLearningEngine(graph_copy)
    struct_engine.sem_learning_approx(cases)
    print 'learned structure: ', struct_engine.network
    print 'total bic score: ', \
          struct_engine.global_bic_score(nbr_samples, cases, 1)