Esempio n. 1
0
def Convert_dict_to_array(River_dict, Array_dict, Reference_data):

    import numpy as np
    import os
    import watertools.General.raster_conversions as RC

    if os.path.splitext(Reference_data)[-1] == '.nc':
        # Get raster information
        geo_out, proj, size_X, size_Y, size_Z, Time = RC.Open_nc_info(Reference_data)
    else:
        # Get raster information
        geo_out, proj, size_X, size_Y = RC.Open_array_info(Reference_data)

    # Create ID Matrix
    y,x = np.indices((size_Y, size_X))
    ID_Matrix = np.int32(np.ravel_multi_index(np.vstack((y.ravel(),x.ravel())),(size_Y,size_X),mode='clip').reshape(x.shape)) + 1

    # Get tiff array time dimension:
    time_dimension = int(np.shape(Array_dict[0])[0])

    # create an empty array
    DataCube = np.ones([time_dimension, size_Y, size_X]) * np.nan

    for river_part in range(0,len(River_dict)):
        for river_pixel in range(1,len(River_dict[river_part])):
            river_pixel_ID = River_dict[river_part][river_pixel]
            if len(np.argwhere(ID_Matrix == river_pixel_ID))>0:
                row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:]
                DataCube[:,row,col] = Array_dict[river_part][:,river_pixel]

    return(DataCube)
Esempio n. 2
0
def RetrieveData(args):
    """
    This function retrieves JRC data for a given date from the
    http://storage.googleapis.com/global-surface-water/downloads/ server.

    Keyword arguments:
    args -- A list of parameters defined in the DownloadData function.
    """
    # Argument
    [output_folder, Names_to_download, lonlim, latlim] = args

    # Collect the data from the JRC webpage and returns the data and lat and long in meters of those tiles
    try:
        Collect_data(Names_to_download, output_folder)
    except:
        print("Was not able to download the file")

    # Clip the data to the users extend
    if len(Names_to_download) == 1:
        trash_folder = os.path.join(output_folder, "Trash")
        data_in = os.path.join(trash_folder, Names_to_download[0])
        data_end, geo_end = RC.clip_data(data_in, latlim, lonlim)
    else:

        data_end = np.zeros([int((latlim[1] - latlim[0])/0.00025), int((lonlim[1] - lonlim[0])/0.00025)])

        for Name_to_merge in Names_to_download:
            trash_folder = os.path.join(output_folder, "Trash")
            data_in = os.path.join(trash_folder, Name_to_merge)
            geo_out, proj, size_X, size_Y = RC.Open_array_info(data_in)
            lat_min_merge = np.maximum(latlim[0], geo_out[3] + size_Y * geo_out[5])
            lat_max_merge = np.minimum(latlim[1], geo_out[3])
            lon_min_merge = np.maximum(lonlim[0], geo_out[0])
            lon_max_merge = np.minimum(lonlim[1], geo_out[0] + size_X * geo_out[1])

            lonmerge = [lon_min_merge, lon_max_merge]
            latmerge = [lat_min_merge, lat_max_merge]
            data_one, geo_one = RC.clip_data(data_in, latmerge, lonmerge)

            Ystart = int((geo_one[3] - latlim[1])/geo_one[5])
            Yend = int(Ystart + np.shape(data_one)[0])
            Xstart = int((geo_one[0] - lonlim[0])/geo_one[1])
            Xend = int(Xstart + np.shape(data_one)[1])

            data_end[Ystart:Yend, Xstart:Xend] = data_one

        geo_end = tuple([lonlim[0], geo_one[1], 0, latlim[1], 0, geo_one[5]])

    # Save results as Gtiff
    fileName_out = os.path.join(output_folder, 'JRC_Occurrence_percent.tif')
    DC.Save_as_tiff(name=fileName_out, data=data_end, geo=geo_end, projection='WGS84')
    shutil.rmtree(trash_folder)
    return True
Esempio n. 3
0
def Calc_Humidity(Temp_format,
                  P_format,
                  Hum_format,
                  output_format,
                  Startdate,
                  Enddate,
                  freq="D"):

    folder_dir_out = os.path.dirname(output_format)

    if not os.path.exists(folder_dir_out):
        os.makedirs(folder_dir_out)

    Dates = pd.date_range(Startdate, Enddate, freq="D")

    for Date in Dates:

        print(Date)

        Day = Date.day
        Month = Date.month
        Year = Date.year

        Tempfile_one = Temp_format.format(yyyy=Year, mm=Month, dd=Day)
        Presfile_one = P_format.format(yyyy=Year, mm=Month, dd=Day)
        Humfile_one = Hum_format.format(yyyy=Year, mm=Month, dd=Day)
        out_folder_one = output_format.format(yyyy=Year, mm=Month, dd=Day)

        geo_out, proj, size_X, size_Y = RC.Open_array_info(Tempfile_one)
        Tdata = RC.Open_tiff_array(Tempfile_one)
        if "MERRA_K" in Temp_format:
            Tdata = Tdata - 273.15

        Tdata[Tdata < -900] = -9999
        Pdata = RC.Open_tiff_array(Presfile_one)
        Hdata = RC.Open_tiff_array(Humfile_one)
        Pdata[Pdata < 0] = -9999
        Hdata[Hdata < 0] = -9999

        # gapfilling
        Tdata = RC.gap_filling(Tdata, -9999)
        Pdata = RC.gap_filling(Pdata, -9999)
        Hdata = RC.gap_filling(Hdata, -9999)

        Esdata = 0.6108 * np.exp((17.27 * Tdata) / (Tdata + 237.3))
        HumData = np.minimum((1.6077717 * Hdata * Pdata / Esdata), 1) * 100
        HumData = HumData.clip(0, 100)

        DC.Save_as_tiff(out_folder_one, HumData, geo_out, "WGS84")

    return ()
def Calc_Property(Dir, latlim, lonlim, SL):

    import watertools

    # Define level
    if SL == "sl3":
        level = "Topsoil"
    elif SL == "sl6":
        level = "Subsoil"

    # check if you need to download
    filename_out_thetasat = os.path.join(
        Dir, 'SoilGrids', 'Theta_Sat',
        'Theta_Sat_%s_SoilGrids_kg-kg.tif' % level)
    if not os.path.exists(filename_out_thetasat):
        if SL == "sl3":
            watertools.Products.SoilGrids.Theta_Sat.Topsoil(
                Dir, latlim, lonlim)
        elif SL == "sl6":
            watertools.Products.SoilGrids.Theta_Sat.Subsoil(
                Dir, latlim, lonlim)

    filedir_out_whc = os.path.join(Dir, 'SoilGrids', 'Water_Holding_Capacity')
    if not os.path.exists(filedir_out_whc):
        os.makedirs(filedir_out_whc)

    # Define theta field capacity output
    filename_out_whc = os.path.join(
        filedir_out_whc,
        'Water_Holding_Capacity_%s_SoilGrids_mm-m.tif' % level)

    if not os.path.exists(filename_out_whc):

        # Get info layer
        geo_out, proj, size_X, size_Y = RC.Open_array_info(
            filename_out_thetasat)

        # Open dataset
        theta_sat = RC.Open_tiff_array(filename_out_thetasat)

        # Calculate theta field capacity
        theta_whc = np.ones(theta_sat.shape) * -9999
        theta_whc = np.where(
            theta_sat < 0.301, 80,
            450 * np.arccosh(theta_sat + 0.7) - 2 * (theta_sat + 0.7) + 20)

        # Save as tiff
        DC.Save_as_tiff(filename_out_whc, theta_whc, geo_out, proj)
    return
Esempio n. 5
0
def Calc_Property(Dir, latlim, lonlim, SL):

    import watertools

    # Define level
    if SL == "sl3":
        level = "Topsoil"
    elif SL == "sl6":
        level = "Subsoil"

    # check if you need to download
    filename_out_thetasat = os.path.join(
        Dir, 'SoilGrids', 'Theta_Sat',
        'Theta_Sat2_%s_SoilGrids_kg-kg.tif' % level)
    if not os.path.exists(filename_out_thetasat):
        if SL == "sl3":
            watertools.Products.SoilGrids.Theta_Sat2.Topsoil(
                Dir, latlim, lonlim)
        elif SL == "sl6":
            watertools.Products.SoilGrids.Theta_Sat2.Subsoil(
                Dir, latlim, lonlim)

    filedir_out_n_genuchten = os.path.join(Dir, 'SoilGrids', 'N_van_genuchten')
    if not os.path.exists(filedir_out_n_genuchten):
        os.makedirs(filedir_out_n_genuchten)

    # Define n van genuchten output
    filename_out_ngenuchten = os.path.join(
        filedir_out_n_genuchten, 'N_genuchten_%s_SoilGrids_-.tif' % level)

    if not os.path.exists(filename_out_ngenuchten):

        # Get info layer
        geo_out, proj, size_X, size_Y = RC.Open_array_info(
            filename_out_thetasat)

        # Open dataset
        theta_sat = RC.Open_tiff_array(filename_out_thetasat)

        # Calculate n van genuchten
        n_van_genuchten = np.ones(theta_sat.shape) * -9999
        n_van_genuchten = 166.63 * theta_sat**4 - 387.72 * theta_sat**3 + 340.55 * theta_sat**2 - 133.07 * theta_sat + 20.739

        # Save as tiff
        DC.Save_as_tiff(filename_out_ngenuchten, n_van_genuchten, geo_out,
                        proj)
    return
Esempio n. 6
0
def Calc_Humidity(Temp_format,
                  P_format,
                  Hum_format,
                  output_format,
                  Startdate,
                  Enddate,
                  freq="D"):

    folder_dir_out = os.path.dirname(output_format)

    if not os.path.exists(folder_dir_out):
        os.makedirs(folder_dir_out)

    Dates = pd.date_range(Startdate, Enddate, freq="D")

    for Date in Dates:

        print(Date)

        Day = Date.day
        Month = Date.month
        Year = Date.year

        Windyfile_one = wind_y_format.format(yyyy=Year, mm=Month, dd=Day)
        Windxfile_one = wind_x_format.format(yyyy=Year, mm=Month, dd=Day)
        out_folder_one = output_format.format(yyyy=Year, mm=Month, dd=Day)

        geo_out, proj, size_X, size_Y = RC.Open_array_info(Windxfile_one)
        Windxdata = RC.Open_tiff_array(Windxfile_one)
        Windxdata[Windxdata < -900] = -9999

        Windydata = RC.Open_tiff_array(Windyfile_one)
        Windydata[Windxdata < -900] = -9999

        # gapfilling
        Windydata = RC.gap_filling(Windydata, -9999)
        Windxdata = RC.gap_filling(Windxdata, -9999)

        Wind = np.sqrt(Windxdata**2 + Windydata**2)

        DC.Save_as_tiff(out_folder_one, Wind, geo_out, "WGS84")

    return ()
Esempio n. 7
0
def Calc_Property(Dir, latlim, lonlim, SL):	
    
    import watertools
    
    # Define level
    if SL == "sl3":
        level = "Topsoil"
    elif SL == "sl6":
        level = "Subsoil" 
    
    # check if you need to download
    filename_out_thetasat = os.path.join(Dir, 'SoilGrids', 'Theta_Sat' ,'Theta_Sat2_%s_SoilGrids_kg-kg.tif' %level)
    if not os.path.exists(filename_out_thetasat):
       if SL == "sl3":
           watertools.Products.SoilGrids.Theta_Sat2.Topsoil(Dir, latlim, lonlim)
       elif SL == "sl6":
           watertools.Products.SoilGrids.Theta_Sat2.Subsoil(Dir, latlim, lonlim)

    filedir_out_thetares = os.path.join(Dir, 'SoilGrids', 'Theta_Res')
    if not os.path.exists(filedir_out_thetares):
        os.makedirs(filedir_out_thetares)   
             
    # Define theta field capacity output
    filename_out_thetares = os.path.join(filedir_out_thetares ,'Theta_Res_%s_SoilGrids_kg-kg.tif' %level)

    if not os.path.exists(filename_out_thetares):
            
        # Get info layer
        geo_out, proj, size_X, size_Y = RC.Open_array_info(filename_out_thetasat)
        
        # Open dataset
        theta_sat = RC.Open_tiff_array(filename_out_thetasat)
        
        # Calculate theta field capacity
        theta_Res = np.ones(theta_sat.shape) * -9999   
        #theta_Res = np.where(theta_sat < 0.351, 0.01, 0.4 * np.arccosh(theta_sat + 0.65) - 0.05 * np.power(theta_sat + 0.65, 2.5) + 0.02)        
        theta_Res = np.where(theta_sat < 0.351, 0.01, 0.271 * np.log(theta_sat) + 0.335)
        # Save as tiff
        DC.Save_as_tiff(filename_out_thetares, theta_Res, geo_out, proj)
    return           
Esempio n. 8
0
def lapse_rate(Dir,temperature_map, DEMmap):
    """
    This function downscales the GLDAS temperature map by using the DEM map

    Keyword arguments:
    temperature_map -- 'C:/' path to the temperature map
    DEMmap -- 'C:/' path to the DEM map
    """

    # calculate average altitudes corresponding to T resolution
    dest = RC.reproject_dataset_example(DEMmap, temperature_map,method = 4)
    DEM_ave_out_name = os.path.join(Dir,'HydroSHED', 'DEM','DEM_ave.tif')
    geo_out, proj, size_X, size_Y = RC.Open_array_info(temperature_map)
    DEM_ave_data = dest.GetRasterBand(1).ReadAsArray()
    DC.Save_as_tiff(DEM_ave_out_name, DEM_ave_data, geo_out, proj)
    dest = None

    # determine lapse-rate [degress Celcius per meter]
    lapse_rate_number = 0.0065

    # open maps as numpy arrays
    dest = RC.reproject_dataset_example(DEM_ave_out_name, DEMmap, method = 2)
    dem_avg=dest.GetRasterBand(1).ReadAsArray()
    dem_avg[dem_avg<0]=0
    dest = None

    # Open the temperature dataset
    dest = RC.reproject_dataset_example(temperature_map, DEMmap, method = 2)
    T=dest.GetRasterBand(1).ReadAsArray()
    dest = None

    # Open Demmap
    demmap = RC.Open_tiff_array(DEMmap)
    dem_avg[demmap<=0]=0
    demmap[demmap==-32768]=np.nan

    # calculate first part
    T = T + ((dem_avg-demmap) * lapse_rate_number)

    return T
Esempio n. 9
0
def Degrees_to_m2(Reference_data):
    """
    This functions calculated the area of each pixel in squared meter.

    Parameters
    ----------
    Reference_data: str
        Path to a tiff file or nc file or memory file of which the pixel area must be defined

    Returns
    -------
    area_in_m2: array
        Array containing the area of each pixel in squared meters

    """
    try:
        # Get the extension of the example data
        filename, file_extension = os.path.splitext(Reference_data)

        # Get raster information
        if str(file_extension) == '.tif':
            geo_out, proj, size_X, size_Y = RC.Open_array_info(Reference_data)
        elif str(file_extension) == '.nc':
            geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(
                Reference_data)

    except:
        geo_out = Reference_data.GetGeoTransform()
        size_X = Reference_data.RasterXSize()
        size_Y = Reference_data.RasterYSize()

    # Calculate the difference in latitude and longitude in meters
    dlat, dlon = Calc_dlat_dlon(geo_out, size_X, size_Y)

    # Calculate the area in squared meters
    area_in_m2 = dlat * dlon

    return (area_in_m2)
Esempio n. 10
0
def adjust_P(Dir, pressure_map, DEMmap):
    """
    This function downscales the GLDAS air pressure map by using the DEM map

    Keyword arguments:
    pressure_map -- 'C:/' path to the pressure map
    DEMmap -- 'C:/' path to the DEM map
    """

    # calculate average latitudes
    destDEMave = RC.reproject_dataset_example(DEMmap, pressure_map, method = 4)
    DEM_ave_out_name = os.path.join(Dir, 'HydroSHED', 'DEM','DEM_ave.tif')
    geo_out, proj, size_X, size_Y = RC.Open_array_info(pressure_map)
    DEM_ave_data = destDEMave.GetRasterBand(1).ReadAsArray()
    DC.Save_as_tiff(DEM_ave_out_name, DEM_ave_data, geo_out, proj)

    # open maps as numpy arrays
    dest = RC.reproject_dataset_example(DEM_ave_out_name, DEMmap, method = 2)
    dem_avg=dest.GetRasterBand(1).ReadAsArray()
    dest = None

    # open maps as numpy arrays
    dest = RC.reproject_dataset_example(pressure_map, DEMmap, method = 2)
    P=dest.GetRasterBand(1).ReadAsArray()
    dest = None

    demmap = RC.Open_tiff_array(DEMmap)
    dem_avg[demmap<=0]=0
    demmap[demmap==-32768]=np.nan

    # calculate second part
    P = P + (101.3*((293-0.0065*(demmap-dem_avg))/293)**5.26 - 101.3)

    os.remove(DEM_ave_out_name)

    return P
Esempio n. 11
0
def Nearest_Interpolate(Dir_in, Startdate, Enddate, Dir_out=None):
    """
    This functions calculates monthly tiff files based on the 8 daily tiff files. (will calculate the average)

    Parameters
    ----------
    Dir_in : str
        Path to the input data
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd'
    Dir_out : str
        Path to the output data, default is same as Dir_in

    """
    # import WA+ modules
    import watertools.General.data_conversions as DC
    import watertools.General.raster_conversions as RC

    # Change working directory
    os.chdir(Dir_in)

    # Find all eight daily files
    files = glob.glob('*8-daily*.tif')

    # Create array with filename and keys (DOY and year) of all the 8 daily files
    i = 0
    DOY_Year = np.zeros([len(files), 3])
    for File in files:

        # Get the time characteristics from the filename
        year = File.split('.')[-4][-4:]
        month = File.split('.')[-3]
        day = File.split('.')[-2]

        # Create pandas Timestamp
        date_file = '%s-%02s-%02s' % (year, month, day)
        Datum = pd.Timestamp(date_file)

        # Get day of year
        DOY = Datum.strftime('%j')

        # Save data in array
        DOY_Year[i, 0] = i
        DOY_Year[i, 1] = DOY
        DOY_Year[i, 2] = year

        # Loop over files
        i += 1

    # Check enddate:
    Enddate_split = Enddate.split('-')
    month_range = calendar.monthrange(int(Enddate_split[0]),
                                      int(Enddate_split[1]))[1]
    Enddate = '%d-%02d-%02d' % (int(Enddate_split[0]), int(
        Enddate_split[1]), month_range)

    # Check startdate:
    Startdate_split = Startdate.split('-')
    Startdate = '%d-%02d-01' % (int(Startdate_split[0]), int(
        Startdate_split[1]))

    # Define end and start date
    Dates = pd.date_range(Startdate, Enddate, freq='MS')
    DatesEnd = pd.date_range(Startdate, Enddate, freq='M')

    # Get array information and define projection
    geo_out, proj, size_X, size_Y = RC.Open_array_info(files[0])
    if int(proj.split('"')[-2]) == 4326:
        proj = "WGS84"

    # Get the No Data Value
    dest = gdal.Open(files[0])
    NDV = dest.GetRasterBand(1).GetNoDataValue()

    # Loop over months and create monthly tiff files
    i = 0
    for date in Dates:
        # Get Start and end DOY of the current month
        DOY_month_start = date.strftime('%j')
        DOY_month_end = DatesEnd[i].strftime('%j')

        # Search for the files that are between those DOYs
        year = date.year
        DOYs = DOY_Year[DOY_Year[:, 2] == year]
        DOYs_oneMonth = DOYs[np.logical_and(
            (DOYs[:, 1] + 8) >= int(DOY_month_start),
            DOYs[:, 1] <= int(DOY_month_end))]

        # Create empty arrays
        Monthly = np.zeros([size_Y, size_X])
        Weight_tot = np.zeros([size_Y, size_X])
        Data_one_month = np.ones([size_Y, size_X]) * np.nan

        # Loop over the files that are within the DOYs
        for EightDays in DOYs_oneMonth[:, 1]:

            # Calculate the amount of days in this month of each file
            Weight = np.ones([size_Y, size_X])

            # For start of month
            if np.min(DOYs_oneMonth[:, 1]) == EightDays:
                Weight = Weight * int(EightDays + 8 - int(DOY_month_start))

            # For end of month
            elif np.max(DOYs_oneMonth[:, 1]) == EightDays:
                Weight = Weight * (int(DOY_month_end) - EightDays + 1)

            # For the middle of the month
            else:
                Weight = Weight * 8

            row = DOYs_oneMonth[np.argwhere(
                DOYs_oneMonth[:, 1] == EightDays)[0][0], :][0]

            # Open the array of current file
            input_name = os.path.join(Dir_in, files[int(row)])
            Data = RC.Open_tiff_array(input_name)

            # Remove NDV
            Weight[Data == NDV] = 0
            Data[Data == NDV] = np.nan

            # Multiply weight time data
            Data = Data * Weight

            # Calculate the total weight and data
            Weight_tot += Weight
            Monthly[~np.isnan(Data)] += Data[~np.isnan(Data)]

        # Go to next month
        i += 1

        # Calculate the average
        Data_one_month[Weight_tot != 0.] = Monthly[
            Weight_tot != 0.] / Weight_tot[Weight_tot != 0.]

        # Define output directory
        if Dir_out == None:
            Dir_out = Dir_in

        # Define output name
        output_name = os.path.join(
            Dir_out, files[int(row)].replace('8-daily', 'monthly'))
        output_name = output_name[:-9] + '%02d.01.tif' % (date.month)

        # Save tiff file
        DC.Save_as_tiff(output_name, Data_one_month, geo_out, proj)

    return
Esempio n. 12
0
def calc_ETref(Dir, tmin_str, tmax_str, humid_str, press_str, wind_str,
               down_short_str, down_long_str, up_long_str, DEMmap_str, DOY):
    """
    This function calculates the ETref by using all the input parameters (path)
    according to FAO standards
    see: http://www.fao.org/docrep/x0490e/x0490e08.htm#TopOfPage

    Keyword arguments:
    tmin_str -- 'C:/'  path to the minimal temperature tiff file [degrees Celcius], e.g. from GLDAS
    tmax_str -- 'C:/'  path to the maximal temperature tiff file [degrees Celcius], e.g. from GLDAS
    humid_str -- 'C:/'  path to the humidity tiff file [kg/kg], e.g. from GLDAS
    press_str -- 'C:/'  path to the air pressure tiff file [kPa], e.g. from GLDAS
    wind_str -- 'C:/'  path to the wind velocity tiff file [m/s], e.g. from GLDAS
    down_short_str -- 'C:/'  path to the downward shortwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF
    down_long_str -- 'C:/'  path to the downward longwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF
    up_long_str -- 'C:/'  path to the upward longwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF
    DEMmap_str -- 'C:/'  path to the DEM tiff file [m] e.g. from HydroSHED
    DOY -- Day of the year
    """

    # Get some geo-data to save results
    GeoT, Projection, xsize, ysize = RC.Open_array_info(DEMmap_str)
    #NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(DEMmap_str)
    raster_shape = [xsize, ysize]

    # Create array to store results
    ETref = np.zeros(raster_shape)

    # gap fill
    tmin_str_GF = RC.gap_filling(tmin_str, -9999)
    tmax_str_GF = RC.gap_filling(tmax_str, -9999)
    humid_str_GF = RC.gap_filling(humid_str, -9999)
    press_str_GF = RC.gap_filling(press_str, -9999)
    wind_str_GF = RC.gap_filling(wind_str, -9999)
    down_short_str_GF = RC.gap_filling(down_short_str, np.nan)
    down_long_str_GF = RC.gap_filling(down_long_str, np.nan)
    if up_long_str is not 'not':
        up_long_str_GF = RC.gap_filling(up_long_str, np.nan)
    else:
        up_long_str_GF = 'nan'

    #dictionary containing all tthe paths to the input-maps
    inputs = dict({
        'tmin': tmin_str_GF,
        'tmax': tmax_str_GF,
        'humid': humid_str_GF,
        'press': press_str_GF,
        'wind': wind_str_GF,
        'down_short': down_short_str_GF,
        'down_long': down_long_str_GF,
        'up_long': up_long_str_GF
    })

    #dictionary containing numpy arrays of al initial and intermediate variables
    input_array = dict({
        'tmin': None,
        'tmax': None,
        'humid': None,
        'press': None,
        'wind': None,
        'albedo': None,
        'down_short': None,
        'down_long': None,
        'up_short': None,
        'up_long': None,
        'net_radiation': None,
        'ea': None,
        'es': None,
        'delta': None
    })

    #APPLY LAPSE RATE CORRECTION ON TEMPERATURE
    tmin = lapse_rate(Dir, inputs['tmin'], DEMmap_str)
    tmax = lapse_rate(Dir, inputs['tmax'], DEMmap_str)

    #PROCESS PRESSURE MAPS
    press = adjust_P(Dir, inputs['press'], DEMmap_str)

    #PREPARE HUMIDITY MAPS
    dest = RC.reproject_dataset_example(inputs['humid'], DEMmap_str, method=2)
    humid = dest.GetRasterBand(1).ReadAsArray()
    dest = None

    #CORRECT WIND MAPS
    dest = RC.reproject_dataset_example(inputs['wind'], DEMmap_str, method=2)
    wind = dest.GetRasterBand(1).ReadAsArray() * 0.75
    dest = None

    #PROCESS GLDAS DATA
    input_array['ea'], input_array['es'], input_array['delta'] = process_GLDAS(
        tmax, tmin, humid, press)

    ea = input_array['ea']
    es = input_array['es']
    delta = input_array['delta']

    if up_long_str == 'not':

        #CORRECT WIND MAPS
        dest = RC.reproject_dataset_example(down_short_str,
                                            DEMmap_str,
                                            method=2)
        Short_Net_data = dest.GetRasterBand(1).ReadAsArray() * 0.75
        dest = None

        dest = RC.reproject_dataset_example(down_long_str,
                                            DEMmap_str,
                                            method=2)
        Short_Clear_data = dest.GetRasterBand(1).ReadAsArray() * 0.75
        dest = None

        # Calculate Long wave Net radiation
        Rnl = 4.903e-9 * (
            ((tmin + 273.16)**4 +
             (tmax + 273.16)**4) / 2) * (0.34 - 0.14 * np.sqrt(ea)) * (
                 1.35 * Short_Net_data / Short_Clear_data - 0.35)

        # Calulate Net Radiation and converted to MJ*d-1*m-2
        net_radiation = (Short_Net_data * 0.77 + Rnl) * 86400 / 10**6

    else:
        #OPEN DOWNWARD SHORTWAVE RADIATION
        dest = RC.reproject_dataset_example(inputs['down_short'],
                                            DEMmap_str,
                                            method=2)
        down_short = dest.GetRasterBand(1).ReadAsArray()
        dest = None
        down_short, tau, bias = slope_correct(down_short, press, ea,
                                              DEMmap_str, DOY)

        #OPEN OTHER RADS
        up_short = down_short * 0.23

        dest = RC.reproject_dataset_example(inputs['down_long'],
                                            DEMmap_str,
                                            method=2)
        down_long = dest.GetRasterBand(1).ReadAsArray()
        dest = None

        dest = RC.reproject_dataset_example(inputs['up_long'],
                                            DEMmap_str,
                                            method=2)
        up_long = dest.GetRasterBand(1).ReadAsArray()
        dest = None

        #OPEN NET RADIATION AND CONVERT W*m-2 TO MJ*d-1*m-2
        net_radiation = ((down_short - up_short) +
                         (down_long - up_long)) * 86400 / 10**6

    #CALCULATE ETref
    ETref = (0.408 * delta * net_radiation + 0.665 * 10**-3 * press *
             (900 / ((tmax + tmin) / 2 + 273)) * wind *
             (es - ea)) / (delta + 0.665 * 10**-3 * press * (1 + 0.34 * wind))

    # Set limits ETref
    ETref[ETref < 0] = 0
    ETref[ETref > 400] = np.nan

    #return a reference ET map (numpy array), a dictionary containing all intermediate information and a bias of the slope correction on down_short
    return ETref
Esempio n. 13
0
def Calc_Property(Dir, latlim, lonlim, SL):

    import watertools

    # Define level
    if SL == "sl3":
        level = "Topsoil"
    elif SL == "sl6":
        level = "Subsoil"

    # check if you need to download
    filename_out_thetasat = os.path.join(
        Dir, 'SoilGrids', 'Theta_Sat',
        'Theta_Sat2_%s_SoilGrids_kg-kg.tif' % level)
    if not os.path.exists(filename_out_thetasat):
        if SL == "sl3":
            watertools.Products.SoilGrids.Theta_Sat2.Topsoil(
                Dir, latlim, lonlim)
        elif SL == "sl6":
            watertools.Products.SoilGrids.Theta_Sat2.Subsoil(
                Dir, latlim, lonlim)

    filename_out_thetares = os.path.join(
        Dir, 'SoilGrids', 'Theta_Res',
        'Theta_Res_%s_SoilGrids_kg-kg.tif' % level)
    if not os.path.exists(filename_out_thetares):
        if SL == "sl3":
            watertools.Products.SoilGrids.Theta_Res.Topsoil(
                Dir, latlim, lonlim)
        elif SL == "sl6":
            watertools.Products.SoilGrids.Theta_Res.Subsoil(
                Dir, latlim, lonlim)

    filename_out_n_genuchten = os.path.join(
        Dir, 'SoilGrids', 'N_van_genuchten',
        'N_genuchten_%s_SoilGrids_-.tif' % level)
    if not os.path.exists(filename_out_n_genuchten):
        if SL == "sl3":
            watertools.Products.SoilGrids.n_van_genuchten.Topsoil(
                Dir, latlim, lonlim)
        elif SL == "sl6":
            watertools.Products.SoilGrids.n_van_genuchten.Subsoil(
                Dir, latlim, lonlim)

    filedir_out_thetafc = os.path.join(Dir, 'SoilGrids', 'Theta_FC')
    if not os.path.exists(filedir_out_thetafc):
        os.makedirs(filedir_out_thetafc)

    # Define theta field capacity output
    filename_out_thetafc = os.path.join(
        filedir_out_thetafc, 'Theta_FC2_%s_SoilGrids_cm3-cm3.tif' % level)

    if not os.path.exists(filename_out_thetafc):

        # Get info layer
        geo_out, proj, size_X, size_Y = RC.Open_array_info(
            filename_out_thetasat)

        # Open dataset
        theta_sat = RC.Open_tiff_array(filename_out_thetasat)
        theta_res = RC.Open_tiff_array(filename_out_thetares)
        n_genuchten = RC.Open_tiff_array(filename_out_n_genuchten)

        # Calculate theta field capacity
        theta_FC = np.ones(theta_sat.shape) * -9999
        #theta_FC = np.where(theta_sat < 0.301, 0.042, np.arccosh(theta_sat + 0.7) - 0.32 * (theta_sat + 0.7) + 0.2)
        #theta_FC = np.where(theta_sat < 0.301, 0.042, -2.95*theta_sat**2+3.96*theta_sat-0.871)

        theta_FC = theta_res + (theta_sat - theta_res) / (
            1 + (0.02 * 200)**n_genuchten)**(1 - 1 / n_genuchten)
        # Save as tiff
        DC.Save_as_tiff(filename_out_thetafc, theta_FC, geo_out, proj)

    return
Esempio n. 14
0
    os.makedirs(folder_dir_out)

Dates = pd.date_range(Startdate, Enddate, freq="D")

for Date in Dates:

    Day = Date.day
    Month = Date.month
    Year = Date.year

    Tempfile_one = Temp_folder.format(yyyy=Year, mm=Month, dd=Day)
    Presfile_one = Pres_folder.format(yyyy=Year, mm=Month, dd=Day)
    Humfile_one = Hum_folder.format(yyyy=Year, mm=Month, dd=Day)
    out_folder_one = out_folder.format(yyyy=Year, mm=Month, dd=Day)

    geo_out, proj, size_X, size_Y = RC.Open_array_info(Tempfile_one)
    Tdata = RC.Open_tiff_array(Tempfile_one)
    Tdata[Tdata < -900] = -9999
    Pdata = RC.Open_tiff_array(Presfile_one)
    Hdata = RC.Open_tiff_array(Humfile_one)
    Pdata[Pdata < 0] = -9999
    Hdata[Hdata < 0] = -9999

    # gapfilling
    Tdata = RC.gap_filling(Tdata, -9999)
    Pdata = RC.gap_filling(Pdata, -9999)
    Hdata = RC.gap_filling(Hdata, -9999)

    Esdata = 0.6108 * np.exp((17.27 * Tdata) / (Tdata + 237.3))
    HumData = np.minimum((1.6077717 * Hdata * Pdata / Esdata), 1) * 100
    HumData = HumData.clip(0, 100)
Esempio n. 15
0
def CollectLANDSAF(SourceLANDSAF, Dir, Startdate, Enddate, latlim, lonlim):
    """
    This function collects and clip LANDSAF data

    Keyword arguments:
    SourceLANDSAF -- 'C:/'  path to the LANDSAF source data (The directory includes SIS and SID)
    Dir -- 'C:/' path to the WA map
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax] (values must be between -60 and 60)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    """

    # Make an array of the days of which the ET is taken
    Dates = pd.date_range(Startdate, Enddate, freq='D')

    # make directories
    SISdir = os.path.join(Dir, 'Landsaf_Clipped', 'SIS')
    if os.path.exists(SISdir) is False:
        os.makedirs(SISdir)

    SIDdir = os.path.join(Dir, 'Landsaf_Clipped', 'SID')
    if os.path.exists(SIDdir) is False:
        os.makedirs(SIDdir)

    ShortwaveBasin(SourceLANDSAF,
                   Dir,
                   latlim,
                   lonlim,
                   Dates=[Startdate, Enddate])
    DEMmap_str = os.path.join(Dir, 'HydroSHED', 'DEM',
                              'DEM_HydroShed_m_3s.tif')
    geo_out, proj, size_X, size_Y = RC.Open_array_info(DEMmap_str)

    # Open DEM map
    demmap = RC.Open_tiff_array(DEMmap_str)
    demmap[demmap < 0] = 0

    # make lat and lon arrays)
    dlat = geo_out[5]
    dlon = geo_out[1]
    lat = geo_out[3] + (np.arange(size_Y) + 0.5) * dlat
    lon = geo_out[0] + (np.arange(size_X) + 0.5) * dlon

    for date in Dates:
        # day of year
        day = date.dayofyear
        Horizontal, Sloping, sinb, sinb_hor, fi, slope, ID = SlopeInfluence(
            demmap, lat, lon, day)

        SIDname = os.path.join(
            SIDdir, 'SAF_SID_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')
        SISname = os.path.join(
            SISdir, 'SAF_SIS_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')

        #PREPARE SID MAPS
        SIDdest = RC.reproject_dataset_example(SIDname, DEMmap_str, method=3)
        SIDdata = SIDdest.GetRasterBand(1).ReadAsArray()

        #PREPARE SIS MAPS
        SISdest = RC.reproject_dataset_example(SISname, DEMmap_str, method=3)
        SISdata = SISdest.GetRasterBand(1).ReadAsArray()

        # Calculate ShortWave net
        Short_Wave_Net = SIDdata * (Sloping /
                                    Horizontal) + SISdata * 86400 / 1e6

        # Calculate ShortWave Clear
        Short_Wave = Sloping
        Short_Wave_Clear = Short_Wave * (0.75 + demmap * 2 * 10**-5)

        # make directories
        PathClear = os.path.join(Dir, 'Landsaf_Clipped', 'Shortwave_Clear_Sky')
        if os.path.exists(PathClear) is False:
            os.makedirs(PathClear)

        PathNet = os.path.join(Dir, 'Landsaf_Clipped', 'Shortwave_Net')
        if os.path.exists(PathNet) is False:
            os.makedirs(PathNet)

        # name Shortwave Clear and Net
        nameFileNet = 'ShortWave_Net_Daily_W-m2_' + date.strftime(
            '%Y-%m-%d') + '.tif'
        nameNet = os.path.join(PathNet, nameFileNet)

        nameFileClear = 'ShortWave_Clear_Daily_W-m2_' + date.strftime(
            '%Y-%m-%d') + '.tif'
        nameClear = os.path.join(PathClear, nameFileClear)

        # Save net and clear short wave radiation
        DC.Save_as_tiff(nameNet, Short_Wave_Net, geo_out, proj)
        DC.Save_as_tiff(nameClear, Short_Wave_Clear, geo_out, proj)
    return
Esempio n. 16
0
def DownloadData(output_folder, latlim, lonlim, parameter, resolution):
    """
    This function downloads DEM data from HydroSHED

    Keyword arguments:
    output_folder -- directory of the result
	latlim -- [ymin, ymax] (values must be between -50 and 50)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    Resample -- 1 = The data will be resampled to 0.001 degree spatial
                    resolution
             -- 0 = The data will have the same pixel size as the data obtained
                    from the internet
    """
    # Define parameter depedent variables
    if parameter == "dir_3s":
        para_name = "DIR"
        unit = "-"
        resolution = '3s'
        parameter = 'dir'

    if parameter == "dem_3s":
        para_name = "DEM"
        unit = "m"
        resolution = '3s'
        parameter = 'dem'

    if parameter == "dir_15s":
        para_name = "DIR"
        unit = "-"
        resolution = '15s'
        parameter = 'dir'

    if parameter == "dem_15s":
        para_name = "DEM"
        unit = "m"
        resolution = '15s'
        parameter = 'dem'

    if parameter == "dir_30s":
        para_name = "DIR"
        unit = "-"
        resolution = '30s'
        parameter = 'dir'

    if parameter == "dem_30s":
        para_name = "DEM"
        unit = "m"
        resolution = '30s'
        parameter = 'dem'

# converts the latlim and lonlim into names of the tiles which must be
# downloaded
    if resolution == '3s':

        name, rangeLon, rangeLat = Find_Document_Names(latlim, lonlim,
                                                       parameter)

        # Memory for the map x and y shape (starts with zero)
        size_X_tot = 0
        size_Y_tot = 0

    if resolution == '15s' or resolution == '30s':
        name = Find_Document_names_15s_30s(latlim, lonlim, parameter,
                                           resolution)

    nameResults = []
    # Create a temporary folder for processing
    output_folder_trash = os.path.join(output_folder, "Temp")
    if not os.path.exists(output_folder_trash):
        os.makedirs(output_folder_trash)

    # Download, extract, and converts all the files to tiff files
    for nameFile in name:

        try:
            # Download the data from
            # http://earlywarning.usgs.gov/hydrodata/
            output_file, file_name = Download_Data(nameFile,
                                                   output_folder_trash,
                                                   parameter, para_name,
                                                   resolution)

            # extract zip data
            DC.Extract_Data(output_file, output_folder_trash)

            # Converts the data with a adf extention to a tiff extension.
            # The input is the file name and in which directory the data must be stored
            file_name_tiff = file_name.split('.')[0] + '_trans_temporary.tif'
            file_name_extract = file_name.split('_')[0:3]
            if resolution == '3s':
                file_name_extract2 = file_name_extract[
                    0] + '_' + file_name_extract[1]

            if resolution == '15s':
                file_name_extract2 = file_name_extract[
                    0] + '_' + file_name_extract[1] + '_15s'

            if resolution == '30s':
                file_name_extract2 = file_name_extract[
                    0] + '_' + file_name_extract[1] + '_30s'

            output_tiff = os.path.join(output_folder_trash, file_name_tiff)

            # convert data from adf to a tiff file
            if (resolution == "15s" or resolution == "3s"):

                input_adf = os.path.join(output_folder_trash,
                                         file_name_extract2,
                                         file_name_extract2, 'hdr.adf')
                output_tiff = DC.Convert_adf_to_tiff(input_adf, output_tiff)

            # convert data from adf to a tiff file
            if resolution == "30s":

                input_bil = os.path.join(output_folder_trash,
                                         '%s.bil' % file_name_extract2)
                output_tiff = DC.Convert_bil_to_tiff(input_bil, output_tiff)

            geo_out, proj, size_X, size_Y = RC.Open_array_info(output_tiff)
            if (resolution == "3s" and
                (int(size_X) != int(6000) or int(size_Y) != int(6000))):
                data = np.ones((6000, 6000)) * -9999

                # Create the latitude bound
                Vfile = str(nameFile)[1:3]
                SignV = str(nameFile)[0]
                SignVer = 1

                # If the sign before the filename is a south sign than latitude is negative
                if SignV is "s":
                    SignVer = -1
                Bound2 = int(SignVer) * int(Vfile)

                # Create the longitude bound
                Hfile = str(nameFile)[4:7]
                SignH = str(nameFile)[3]
                SignHor = 1
                # If the sign before the filename is a west sign than longitude is negative
                if SignH is "w":
                    SignHor = -1
                Bound1 = int(SignHor) * int(Hfile)

                Expected_X_min = Bound1
                Expected_Y_max = Bound2 + 5

                Xid_start = int(
                    np.round((geo_out[0] - Expected_X_min) / geo_out[1]))
                Xid_end = int(
                    np.round(
                        ((geo_out[0] + size_X * geo_out[1]) - Expected_X_min) /
                        geo_out[1]))
                Yid_start = int(
                    np.round((Expected_Y_max - geo_out[3]) / (-geo_out[5])))
                Yid_end = int(
                    np.round((Expected_Y_max - (geo_out[3] +
                                                (size_Y * geo_out[5]))) /
                             (-geo_out[5])))

                data[Yid_start:Yid_end,
                     Xid_start:Xid_end] = RC.Open_tiff_array(output_tiff)
                if np.max(data) == 255:
                    data[data == 255] = -9999
                data[data < -9999] = -9999

                geo_in = [
                    Bound1, 0.00083333333333333, 0.0,
                    int(Bound2 + 5), 0.0, -0.0008333333333333333333
                ]

                # save chunk as tiff file
                DC.Save_as_tiff(name=output_tiff,
                                data=data,
                                geo=geo_in,
                                projection="WGS84")

        except:

            if resolution == '3s':
                # If tile not exist create a replacing zero tile (sea tiles)
                output = nameFile.split('.')[0] + "_trans_temporary.tif"
                output_tiff = os.path.join(output_folder_trash, output)
                file_name = nameFile
                data = np.ones((6000, 6000)) * -9999
                data = data.astype(np.float32)

                # Create the latitude bound
                Vfile = str(file_name)[1:3]
                SignV = str(file_name)[0]
                SignVer = 1
                # If the sign before the filename is a south sign than latitude is negative
                if SignV is "s":
                    SignVer = -1
                Bound2 = int(SignVer) * int(Vfile)

                # Create the longitude bound
                Hfile = str(file_name)[4:7]
                SignH = str(file_name)[3]
                SignHor = 1
                # If the sign before the filename is a west sign than longitude is negative
                if SignH is "w":
                    SignHor = -1
                Bound1 = int(SignHor) * int(Hfile)

                # Geospatial data for the tile
                geo_in = [
                    Bound1, 0.00083333333333333, 0.0,
                    int(Bound2 + 5), 0.0, -0.0008333333333333333333
                ]

                # save chunk as tiff file
                DC.Save_as_tiff(name=output_tiff,
                                data=data,
                                geo=geo_in,
                                projection="WGS84")

            if resolution == '15s':

                print('no 15s data is in dataset')

        if resolution == '3s':

            # clip data
            Data, Geo_data = RC.clip_data(output_tiff, latlim, lonlim)
            size_Y_out = int(np.shape(Data)[0])
            size_X_out = int(np.shape(Data)[1])

            # Total size of the product so far
            size_Y_tot = int(size_Y_tot + size_Y_out)
            size_X_tot = int(size_X_tot + size_X_out)

            if nameFile is name[0]:
                Geo_x_end = Geo_data[0]
                Geo_y_end = Geo_data[3]
            else:
                Geo_x_end = np.min([Geo_x_end, Geo_data[0]])
                Geo_y_end = np.max([Geo_y_end, Geo_data[3]])

            # create name for chunk
            FileNameEnd = "%s_temporary.tif" % (nameFile)
            nameForEnd = os.path.join(output_folder_trash, FileNameEnd)
            nameResults.append(str(nameForEnd))

            # save chunk as tiff file
            DC.Save_as_tiff(name=nameForEnd,
                            data=Data,
                            geo=Geo_data,
                            projection="WGS84")

    if resolution == '3s':
        #size_X_end = int(size_X_tot) #!
        #size_Y_end = int(size_Y_tot) #!

        size_X_end = int(size_X_tot / len(rangeLat)) + 1  #!
        size_Y_end = int(size_Y_tot / len(rangeLon)) + 1  #!

        # Define the georeference of the end matrix
        geo_out = [Geo_x_end, Geo_data[1], 0, Geo_y_end, 0, Geo_data[5]]

        latlim_out = [geo_out[3] + geo_out[5] * size_Y_end, geo_out[3]]
        lonlim_out = [geo_out[0], geo_out[0] + geo_out[1] * size_X_end]

        # merge chunk together resulting in 1 tiff map
        datasetTot = Merge_DEM(latlim_out, lonlim_out, nameResults, size_Y_end,
                               size_X_end)

        datasetTot[datasetTot < -9999] = -9999

    if resolution == '15s':
        output_file_merged = os.path.join(output_folder_trash, 'merged.tif')
        datasetTot, geo_out = Merge_DEM_15s_30s(output_folder_trash,
                                                output_file_merged, latlim,
                                                lonlim, resolution)

    if resolution == '30s':
        output_file_merged = os.path.join(output_folder_trash, 'merged.tif')
        datasetTot, geo_out = Merge_DEM_15s_30s(output_folder_trash,
                                                output_file_merged, latlim,
                                                lonlim, resolution)

    # name of the end result
    output_DEM_name = "%s_HydroShed_%s_%s.tif" % (para_name, unit, resolution)

    Save_name = os.path.join(output_folder, output_DEM_name)

    # Make geotiff file
    DC.Save_as_tiff(name=Save_name,
                    data=datasetTot,
                    geo=geo_out,
                    projection="WGS84")
    os.chdir(output_folder)

    # Delete the temporary folder
    shutil.rmtree(output_folder_trash)
Esempio n. 17
0
def Calc_Property(Dir, latlim, lonlim, SL):

    import watertools.Collect.SoilGrids as SG

    # Download needed layers
    SG.Clay_Content(Dir, latlim, lonlim, level=SL)
    #SG.Organic_Carbon_Content(Dir, latlim, lonlim, level=SL)
    SG.Bulk_Density(Dir, latlim, lonlim, level=SL)

    # Define path to layers
    filename_clay = os.path.join(
        Dir, 'SoilGrids', 'Clay_Content',
        'ClayContentMassFraction_%s_SoilGrids_percentage.tif' % SL)
    #filename_om = os.path.join(Dir, 'SoilGrids', 'Soil_Organic_Carbon_Content' ,'SoilOrganicCarbonContent_%s_SoilGrids_g_kg.tif' %SL)
    filename_bulkdensity = os.path.join(
        Dir, 'SoilGrids', 'Bulk_Density',
        'BulkDensity_%s_SoilGrids_kg-m-3.tif' % SL)

    # Define path for output
    if SL == "sl3":
        level = "Topsoil"
    elif SL == "sl6":
        level = "Subsoil"

    filedir_out_densbulk = os.path.join(Dir, 'SoilGrids', 'Bulk_Density')
    if not os.path.exists(filedir_out_densbulk):
        os.makedirs(filedir_out_densbulk)
    filedir_out_thetasat = os.path.join(Dir, 'SoilGrids', 'Theta_Sat')
    if not os.path.exists(filedir_out_thetasat):
        os.makedirs(filedir_out_thetasat)

    #filename_out_densbulk = os.path.join(filedir_out_densbulk ,'Bulk_Density_%s_SoilGrids_g-cm-3.tif' %level)
    filename_out_thetasat = os.path.join(
        filedir_out_thetasat, 'Theta_Sat2_%s_SoilGrids_kg-kg.tif' % level)

    #if not (os.path.exists(filename_out_densbulk) and os.path.exists(filename_out_thetasat)):
    if not os.path.exists(filename_out_thetasat):

        # Open datasets
        dest_clay = gdal.Open(filename_clay)
        #dest_om = gdal.Open(filename_om)
        dest_bulk = gdal.Open(filename_bulkdensity)

        # Open Array info
        geo_out, proj, size_X, size_Y = RC.Open_array_info(filename_clay)

        # Open Arrays
        Clay = dest_clay.GetRasterBand(1).ReadAsArray()
        #OM = dest_om.GetRasterBand(1).ReadAsArray()

        Clay = np.float_(Clay)
        Clay[Clay > 100] = np.nan
        #OM = np.float_(OM)
        #OM[OM<0]=np.nan
        #OM = OM/1000

        # Calculate bulk density
        #bulk_dens = 1/(0.6117 + 0.3601 * Clay/100 + 0.002172 * np.power(OM * 100, 2)+ 0.01715 * np.log(OM * 100))
        bulk_dens = dest_bulk.GetRasterBand(1).ReadAsArray()
        bulk_dens = bulk_dens / 1000
        '''
        # Oude methode gebaseerd op Schenost, Sinowski & Priesack (1996) 
        
        # Calculate theta saturated
        theta_sat = 0.85 * (1- (bulk_dens/2.65)) + 0.13 * Clay/100
        '''
        # Nieuwe methode gebaseerd op Toth et al (2014)

        # Calculate silt fraction based on clay fraction
        Silt_fraction = 0.7 * (Clay / 100)**2 + 0.308 * Clay / 100

        # Calculate theta sat
        theta_sat = 0.8308 - 0.28217 * bulk_dens + 0.02728 * Clay / 100 + 0.0187 * Silt_fraction

        # Save data
        #DC.Save_as_tiff(filename_out_densbulk, bulk_dens, geo_out, "WGS84")
        DC.Save_as_tiff(filename_out_thetasat, theta_sat, geo_out, "WGS84")

    return ()
Esempio n. 18
0
def main(Dir, Startdate = '', Enddate = '',
         latlim = [-60, 60], lonlim = [-180, 180], pixel_size = False, cores = False, LANDSAF =  0, SourceLANDSAF=  '', Waitbar = 1):
    """
    This function downloads TRMM3B43 V7 (monthly) data

    Keyword arguments:
    Dir -- 'C:/file/to/path/'
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax] (values must be between -50 and 50)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    cores -- The number of cores used to run the routine.
             It can be 'False' to avoid using parallel computing
             routines.
    Waitbar -- 1 (Default) will print the waitbar
    """

    print('Create monthly Reference ET data for period %s till %s' %(Startdate, Enddate))

    # An array of monthly dates which will be calculated
    Dates = pd.date_range(Startdate,Enddate,freq = 'MS')

    # Create Waitbar
    if Waitbar == 1:
        import watertools.Functions.Random.WaitbarConsole as WaitbarConsole
        total_amount = len(Dates)
        amount = 0
        WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50)

	# Calculate the ETref day by day for every month
    for Date in Dates:

        # Collect date data
        Y=Date.year
        M=Date.month
        Mday=calendar.monthrange(Y,M)[1]
        Days=pd.date_range(Date,Date+pd.Timedelta(days=Mday),freq='D')
        StartTime=Date.strftime('%Y')+'-'+Date.strftime('%m')+ '-01'
        EndTime=Date.strftime('%Y')+'-'+Date.strftime('%m')+'-'+str(Mday)

        # Get ETref on daily basis
        daily(Dir=Dir, Startdate=StartTime,Enddate=EndTime,latlim=latlim, lonlim=lonlim, pixel_size = pixel_size, cores=cores, LANDSAF=LANDSAF, SourceLANDSAF=SourceLANDSAF, Waitbar = 0)

        # Load DEM
        if not pixel_size:
            nameDEM='DEM_HydroShed_m_3s.tif'
            DEMmap=os.path.join(Dir,'HydroSHED','DEM',nameDEM )
        else:
            DEMmap=os.path.join(Dir,'HydroSHED','DEM','DEM_HydroShed_m_reshaped_for_ETref.tif')
        # Get some geo-data to save results
        geo_ET, proj, size_X, size_Y = RC.Open_array_info(DEMmap)

        dataMonth=np.zeros([size_Y,size_X])

        for Day in Days[:-1]:
            DirDay=os.path.join(Dir,'ETref','Daily','ETref_mm-day-1_daily_' + Day.strftime('%Y.%m.%d') + '.tif')
            dataDay=gdal.Open(DirDay)
            Dval=dataDay.GetRasterBand(1).ReadAsArray().astype(np.float32)
            Dval[Dval<0]=0
            dataMonth=dataMonth+Dval
            dataDay=None

        # make geotiff file
        output_folder_month=os.path.join(Dir,'ETref','Monthly')
        if os.path.exists(output_folder_month)==False:
            os.makedirs(output_folder_month)
        DirMonth=os.path.join(output_folder_month,'ETref_mm-month-1_monthly_'+Date.strftime('%Y.%m.%d') + '.tif')

        # Create the tiff file
        DC.Save_as_tiff(DirMonth,dataMonth, geo_ET, proj)

        # Create Waitbar
        if Waitbar == 1:
            amount += 1
            WaitbarConsole.printWaitBar(amount, total_amount, prefix = 'Progress:', suffix = 'Complete', length = 50)
def Nearest_Interpolate(Dir_in, Startdate, Enddate, Dir_out=None):
    """
    This functions calculates yearly tiff files based on the monthly tiff files. (will calculate the total sum)

    Parameters
    ----------
    Dir_in : str
        Path to the input data
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd'
    Dir_out : str
        Path to the output data, default is same as Dir_in

    """
    # import WA+ modules
    import watertools.General.data_conversions as DC
    import watertools.General.raster_conversions as RC

    # Change working directory
    os.chdir(Dir_in)

    # Define end and start date
    Dates = pd.date_range(Startdate, Enddate, freq='AS')

    # Find all monthly files
    files = glob.glob('*monthly*.tif')

    # Get array information and define projection
    geo_out, proj, size_X, size_Y = RC.Open_array_info(files[0])
    if int(proj.split('"')[-2]) == 4326:
        proj = "WGS84"

    # Get the No Data Value
    dest = gdal.Open(files[0])
    NDV = dest.GetRasterBand(1).GetNoDataValue()

    for date in Dates:
        Year = date.year
        files_one_year = glob.glob('*monthly*%d*.tif' % Year)

        # Create empty arrays
        Year_data = np.zeros([size_Y, size_X])

        if len(files_one_year) is not int(12):
            print("One month in year %s is missing!" % Year)

        for file_one_year in files_one_year:
            file_path = os.path.join(Dir_in, file_one_year)

            Month_data = RC.Open_tiff_array(file_path)
            Month_data[np.isnan(Month_data)] = 0.0
            Month_data[Month_data == -9999] = 0.0
            Year_data += Month_data

        # Define output directory
        if Dir_out == None:
            Dir_out = Dir_in
        if not os.path.exists(Dir_out):
            os.makedirs(Dir_out)

        # Define output name
        output_name = os.path.join(
            Dir_out,
            file_one_year.replace('monthly',
                                  'yearly').replace('month', 'year'))
        output_name = output_name[:-14] + '%d.01.01.tif' % (date.year)

        # Save tiff file
        DC.Save_as_tiff(output_name, Year_data, geo_out, proj)

    return
Esempio n. 20
0
def slope_correct(down_short_hor, pressure, ea, DEMmap, DOY):
    """
    This function downscales the CFSR solar radiation by using the DEM map
    The Slope correction is based on Allen et al. (2006)
    'Analytical integrated functions for daily solar radiation on slope'

    Keyword arguments:
    down_short_hor -- numpy array with the horizontal downwards shortwave radiation
    pressure -- numpy array with the air pressure
    ea -- numpy array with the actual vapour pressure
    DEMmap -- 'C:/' path to the DEM map
    DOY -- day of the year
    """

    # Get Geo Info
    GeoT, Projection, xsize, ysize = RC.Open_array_info(DEMmap)

    minx = GeoT[0]
    miny = GeoT[3] + xsize*GeoT[4] + ysize*GeoT[5]

    x = np.flipud(np.arange(xsize)*GeoT[1] + minx + GeoT[1]/2)
    y = np.flipud(np.arange(ysize)*-GeoT[5] + miny + -GeoT[5]/2)

    # Calculate Extraterrestrial Solar Radiation [W m-2]
    demmap = RC.Open_tiff_array(DEMmap)
    demmap[demmap<0]=0

	# apply the slope correction
    Ra_hor, Ra_slp, sinb, sinb_hor, fi, slope, ID = SlopeInfluence(demmap,y,x,DOY)

    # Calculate atmospheric transmissivity
    Rs_hor = down_short_hor

    # EQ 39
    tau = Rs_hor/Ra_hor

    #EQ 41
    KB_hor = np.zeros(tau.shape) * np.nan

    indice = np.where(tau.flat >= 0.42)
    KB_hor.flat[indice] = 1.56*tau.flat[indice] -0.55

    indice = np.logical_and(tau.flat > 0.175, tau.flat < 0.42)
    KB_hor.flat[indice] = 0.022 - 0.280*tau.flat[indice] + 0.828*tau.flat[indice]**2 + 0.765*tau.flat[indice]**3

    indice = np.where(tau.flat <= 0.175)
    KB_hor.flat[indice] = 0.016*tau.flat[indice]

    # EQ 42
    KD_hor = tau - KB_hor

    Kt=0.7

    #EQ 18
    W = 0.14*ea*pressure + 2.1

    KB0 = 0.98*np.exp((-0.00146*pressure/Kt/sinb)-0.075*(W/sinb)**0.4)
    KB0_hor = 0.98*np.exp((-0.00146*pressure/Kt/sinb_hor)-0.075*(W/sinb_hor)**0.4)

    #EQ 34
    fB = KB0/KB0_hor * Ra_slp/Ra_hor
    fia = (1-KB_hor) * (1 + (KB_hor/(KB_hor+KD_hor))**0.5 * np.sin(slope/2)**3)*fi + fB*KB_hor

    Rs = Rs_hor*(fB*(KB_hor/tau) + fia*(KD_hor/tau) + 0.23*(1-fi))

    Rs[np.isnan(Rs)] = Rs_hor[np.isnan(Rs)]

    Rs_equiv = Rs / np.cos(slope)

    bias = np.nansum(Rs_hor)/np.nansum(Rs_equiv)

    return Rs_equiv, tau, bias
Esempio n. 21
0
def Calc_Property(Dir, latlim, lonlim, SL):	
	
    import watertools.Collect.SoilGrids as SG
    
    # Download needed layers
    SG.Clay_Content(Dir, latlim, lonlim, level=SL)
    SG.Organic_Carbon_Content(Dir, latlim, lonlim, level=SL)
    #SG.Bulk_Density(Dir, latlim, lonlim, level=SL)
    
    # Define path to layers
    filename_clay = os.path.join(Dir, 'SoilGrids', 'Clay_Content' ,'ClayContentMassFraction_%s_SoilGrids_percentage.tif' %SL)
    filename_om = os.path.join(Dir, 'SoilGrids', 'Soil_Organic_Carbon_Content' ,'SoilOrganicCarbonContent_%s_SoilGrids_g_kg.tif' %SL)
    #filename_bulkdensity = os.path.join(Dir, 'SoilGrids', 'Bulk_density' ,'BulkDensity_%s_SoilGrids_kg-m-3.tif' %SL)
    
    # Define path for output
    if SL == "sl3":
        level = "Topsoil"
    elif SL == "sl6":
        level = "Subsoil"        

    filedir_out_densbulk = os.path.join( Dir, 'SoilGrids', 'Bulk_density')
    if not os.path.exists(filedir_out_densbulk):
        os.makedirs(filedir_out_densbulk)
    filedir_out_thetasat = os.path.join(Dir, 'SoilGrids', 'Theta_Sat')
    if not os.path.exists(filedir_out_thetasat):
        os.makedirs(filedir_out_thetasat)    
    
    filename_out_densbulk = os.path.join(filedir_out_densbulk ,'Bulk_Density_%s_SoilGrids_g-cm-3.tif' %level)
    filename_out_thetasat = os.path.join(filedir_out_thetasat,'Theta_Sat_%s_SoilGrids_kg-kg.tif' %level)

    if not (os.path.exists(filename_out_densbulk) and os.path.exists(filename_out_thetasat)):
    #if not os.path.exists(filename_out_thetasat):
        
        # Open datasets
        dest_clay = gdal.Open(filename_clay)
        dest_om = gdal.Open(filename_om)
        #dest_bulk = gdal.Open(filename_bulkdensity)
    
        # Open Array info
        geo_out, proj, size_X, size_Y = RC.Open_array_info(filename_clay)    
        
        # Open Arrays
        Clay = dest_clay.GetRasterBand(1).ReadAsArray()
        OM = dest_om.GetRasterBand(1).ReadAsArray()
        Clay = np.float_(Clay)
        Clay[Clay>100]=np.nan
        OM = np.float_(OM)
        OM[OM<0]=np.nan  
        OM = OM/1000
        
        
        # Calculate bulk density
        bulk_dens = 1/(0.6117 + 0.3601 * Clay/100 + 0.002172 * np.power(OM * 100, 2)+ 0.01715 * np.log(OM * 100))
        #bulk_dens = dest_bulk.GetRasterBand(1).ReadAsArray()
        
        # Calculate theta saturated
        theta_sat = 0.85 * (1- (bulk_dens/2.65)) + 0.13 * Clay/100
        
        # Save data
        DC.Save_as_tiff(filename_out_densbulk, bulk_dens, geo_out, "WGS84")
        DC.Save_as_tiff(filename_out_thetasat, theta_sat, geo_out, "WGS84")
        
    return()    
Esempio n. 22
0
def Save_as_NC(namenc, DataCube, Var, Reference_filename,  Startdate = '', Enddate = '', Time_steps = '', Scaling_factor = 1):
    """
    This function save the array as a netcdf file

    Keyword arguments:
    namenc -- string, complete path of the output file with .nc extension
    DataCube -- [array], dataset of the nc file, can be a 2D or 3D array [time, lat, lon], must be same size as reference data
    Var -- string, the name of the variable
    Reference_filename -- string, complete path to the reference file name
    Startdate -- 'YYYY-mm-dd', needs to be filled when you want to save a 3D array,  defines the Start datum of the dataset
    Enddate -- 'YYYY-mm-dd', needs to be filled when you want to save a 3D array, defines the End datum of the dataset
    Time_steps -- 'monthly' or 'daily', needs to be filled when you want to save a 3D array, defines the timestep of the dataset
    Scaling_factor -- number, scaling_factor of the dataset, default = 1
    """
    # Import modules
    import watertools.General.raster_conversions as RC
    from netCDF4 import Dataset

    if not os.path.exists(namenc):

        # Get raster information
        geo_out, proj, size_X, size_Y = RC.Open_array_info(Reference_filename)

        # Create the lat/lon rasters
        lon = np.arange(size_X)*geo_out[1]+geo_out[0] - 0.5 * geo_out[1]
        lat = np.arange(size_Y)*geo_out[5]+geo_out[3] - 0.5 * geo_out[5]

        # Create the nc file
        nco = Dataset(namenc, 'w', format='NETCDF4_CLASSIC')
        nco.description = '%s data' %Var

        # Create dimensions, variables and attributes:
        nco.createDimension('longitude', size_X)
        nco.createDimension('latitude', size_Y)

        # Create time dimension if the parameter is time dependent
        if Startdate is not '':
            if Time_steps == 'monthly':
                Dates = pd.date_range(Startdate,Enddate,freq = 'MS')
            if Time_steps == 'daily':
                Dates = pd.date_range(Startdate,Enddate,freq = 'D')
            time_or=np.zeros(len(Dates))
            i = 0
            for Date in Dates:
                time_or[i] = Date.toordinal()
                i += 1
            nco.createDimension('time', None)
            timeo = nco.createVariable('time', 'f4', ('time',))
            timeo.units = '%s' %Time_steps
            timeo.standard_name = 'time'

        # Create the lon variable
        lono = nco.createVariable('longitude', 'f8', ('longitude',))
        lono.standard_name = 'longitude'
        lono.units = 'degrees_east'
        lono.pixel_size = geo_out[1]

        # Create the lat variable
        lato = nco.createVariable('latitude', 'f8', ('latitude',))
        lato.standard_name = 'latitude'
        lato.units = 'degrees_north'
        lato.pixel_size = geo_out[5]

        # Create container variable for CRS: lon/lat WGS84 datum
        crso = nco.createVariable('crs', 'i4')
        crso.long_name = 'Lon/Lat Coords in WGS84'
        crso.grid_mapping_name = 'latitude_longitude'
        crso.projection = proj
        crso.longitude_of_prime_meridian = 0.0
        crso.semi_major_axis = 6378137.0
        crso.inverse_flattening = 298.257223563
        crso.geo_reference = geo_out

        # Create the data variable
        if Startdate is not '':
            preco = nco.createVariable('%s' %Var, 'f8',  ('time', 'latitude', 'longitude'), zlib=True, least_significant_digit=1)
            timeo[:]=time_or
        else:
            preco = nco.createVariable('%s' %Var, 'f8',  ('latitude', 'longitude'), zlib=True, least_significant_digit=1)

        # Set the data variable information
        preco.scale_factor = Scaling_factor
        preco.add_offset = 0.00
        preco.grid_mapping = 'crs'
        preco.set_auto_maskandscale(False)

        # Set the lat/lon variable
        lono[:] = lon
        lato[:] = lat

        # Set the data variable
        if Startdate is not '':
            for i in range(len(Dates)):
                preco[i,:,:] = DataCube[i,:,:]*1./np.float(Scaling_factor)
        else:
            preco[:,:] = DataCube[:,:] * 1./np.float(Scaling_factor)

        nco.close()
    return()
Esempio n. 23
0
def ETref(Date, args):
    """
    This function starts to calculate ETref (daily) data based on Hydroshed, GLDAS, and (CFSR/LANDSAF) in parallel or single core

    Keyword arguments:
    Date -- panda timestamp
    args -- includes all the parameters that are needed for the ETref
	"""

    # unpack the arguments
    [Dir, lonlim, latlim, pixel_size, LANDSAF] = args

    # Set the paths
    nameTmin = 'Tair-min_GLDAS-NOAH_C_daily_' + Date.strftime(
        '%Y.%m.%d') + ".tif"
    tmin_str = os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS', 'daily',
                            'tair_f_inst', 'min', nameTmin)

    nameTmax = 'Tair-max_GLDAS-NOAH_C_daily_' + Date.strftime(
        '%Y.%m.%d') + ".tif"
    tmax_str = os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS', 'daily',
                            'tair_f_inst', 'max', nameTmax)

    nameHumid = 'Hum_GLDAS-NOAH_kg-kg_daily_' + Date.strftime(
        '%Y.%m.%d') + ".tif"
    humid_str = os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS', 'daily',
                             'qair_f_inst', 'mean', nameHumid)

    namePress = 'P_GLDAS-NOAH_kpa_daily_' + Date.strftime('%Y.%m.%d') + ".tif"
    press_str = os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS', 'daily',
                             'psurf_f_inst', 'mean', namePress)

    nameWind = 'W_GLDAS-NOAH_m-s-1_daily_' + Date.strftime('%Y.%m.%d') + ".tif"
    wind_str = os.path.join(Dir, 'Weather_Data', 'Model', 'GLDAS', 'daily',
                            'wind_f_inst', 'mean', nameWind)

    if LANDSAF == 1:

        nameShortClearname = 'ShortWave_Clear_Daily_W-m2_' + Date.strftime(
            '%Y-%m-%d') + '.tif'
        input2_str = os.path.join(Dir, 'Landsaf_Clipped',
                                  'Shortwave_Clear_Sky', nameShortClearname)

        nameShortNetname = 'ShortWave_Net_Daily_W-m2_' + Date.strftime(
            '%Y-%m-%d') + '.tif'
        input1_str = os.path.join(Dir, 'Landsaf_Clipped', 'Shortwave_Net',
                                  nameShortNetname)

        input3_str = 'not'

    else:
        if Date < pd.Timestamp(pd.datetime(2011, 4, 1)):

            nameDownLong = 'DLWR_CFSR_W-m2_' + Date.strftime(
                '%Y.%m.%d') + ".tif"
            input2_str = os.path.join(Dir, 'Radiation', 'CFSR', nameDownLong)

            nameDownShort = 'DSWR_CFSR_W-m2_' + Date.strftime(
                '%Y.%m.%d') + ".tif"
            input1_str = os.path.join(Dir, 'Radiation', 'CFSR', nameDownShort)

            nameUpLong = 'ULWR_CFSR_W-m2_' + Date.strftime('%Y.%m.%d') + ".tif"
            input3_str = os.path.join(Dir, 'Radiation', 'CFSR', nameUpLong)

        else:
            nameDownLong = 'DLWR_CFSRv2_W-m2_' + Date.strftime(
                '%Y.%m.%d') + ".tif"
            input2_str = os.path.join(Dir, 'Radiation', 'CFSRv2', nameDownLong)

            nameDownShort = 'DSWR_CFSRv2_W-m2_' + Date.strftime(
                '%Y.%m.%d') + ".tif"
            input1_str = os.path.join(Dir, 'Radiation', 'CFSRv2',
                                      nameDownShort)

            nameUpLong = 'ULWR_CFSRv2_W-m2_' + Date.strftime(
                '%Y.%m.%d') + ".tif"
            input3_str = os.path.join(Dir, 'Radiation', 'CFSRv2', nameUpLong)

# The day of year
    DOY = Date.dayofyear

    # Load DEM
    if not pixel_size:
        DEMmap_str = os.path.join(Dir, 'HydroSHED', 'DEM',
                                  'DEM_HydroShed_m_3s.tif')
    else:
        DEMmap_str = os.path.join(Dir, 'HydroSHED', 'DEM',
                                  'DEM_HydroShed_m_3s.tif')
        dest, ulx, lry, lrx, uly, epsg_to = RC.reproject_dataset_epsg(
            DEMmap_str, pixel_spacing=pixel_size, epsg_to=4326, method=2)
        DEMmap_str = os.path.join(Dir, 'HydroSHED', 'DEM',
                                  'DEM_HydroShed_m_reshaped_for_ETref.tif')
        DEM_data = dest.GetRasterBand(1).ReadAsArray()
        geo_dem = [ulx, pixel_size, 0.0, uly, 0.0, -pixel_size]
        DC.Save_as_tiff(name=DEMmap_str,
                        data=DEM_data,
                        geo=geo_dem,
                        projection='4326')

    # Calc ETref
    ETref = calc_ETref(Dir, tmin_str, tmax_str, humid_str, press_str, wind_str,
                       input1_str, input2_str, input3_str, DEMmap_str, DOY)

    # Make directory for the MODIS ET data
    output_folder = os.path.join(Dir, 'ETref', 'Daily')
    if not os.path.exists(output_folder):
        os.makedirs(output_folder)

    # Create the output names
    NameETref = 'ETref_mm-day-1_daily_' + Date.strftime('%Y.%m.%d') + '.tif'
    NameEnd = os.path.join(output_folder, NameETref)

    # Collect geotiff information
    geo_out, proj, size_X, size_Y = RC.Open_array_info(DEMmap_str)

    # Create daily ETref tiff files
    DC.Save_as_tiff(name=NameEnd, data=ETref, geo=geo_out, projection=proj)
Esempio n. 24
0
def Merge_DEM_15s_30s(output_folder_trash, output_file_merged, latlim, lonlim,
                      resolution):

    os.chdir(output_folder_trash)
    tiff_files = glob.glob('*.tif')
    resolution_geo = []
    lonmin = lonlim[0]
    lonmax = lonlim[1]
    latmin = latlim[0]
    latmax = latlim[1]
    if resolution == "15s":
        resolution_geo = 0.00416667
    if resolution == "30s":
        resolution_geo = 0.00416667 * 2

    size_x_tot = int(np.round((lonmax - lonmin) / resolution_geo))
    size_y_tot = int(np.round((latmax - latmin) / resolution_geo))

    data_tot = np.ones([size_y_tot, size_x_tot]) * -9999.

    for tiff_file in tiff_files:
        inFile = os.path.join(output_folder_trash, tiff_file)
        geo, proj, size_X, size_Y = RC.Open_array_info(inFile)
        resolution_geo = geo[1]

        lonmin_one = geo[0]
        lonmax_one = geo[0] + size_X * geo[1]
        latmin_one = geo[3] + size_Y * geo[5]
        latmax_one = geo[3]

        if lonmin_one < lonmin:
            lonmin_clip = lonmin
        else:
            lonmin_clip = lonmin_one

        if lonmax_one > lonmax:
            lonmax_clip = lonmax
        else:
            lonmax_clip = lonmax_one

        if latmin_one < latmin:
            latmin_clip = latmin
        else:
            latmin_clip = latmin_one

        if latmax_one > latmax:
            latmax_clip = latmax
        else:
            latmax_clip = latmax_one

        size_x_clip = int(
            np.round((lonmax_clip - lonmin_clip) / resolution_geo))
        size_y_clip = int(
            np.round((latmax_clip - latmin_clip) / resolution_geo))

        inFile = os.path.join(output_folder_trash, tiff_file)
        geo, proj, size_X, size_Y = RC.Open_array_info(inFile)
        Data = RC.Open_tiff_array(inFile)
        lonmin_tiff = geo[0]
        latmax_tiff = geo[3]
        lon_tiff_position = int(
            np.round((lonmin_clip - lonmin_tiff) / resolution_geo))
        lat_tiff_position = int(
            np.round((latmax_tiff - latmax_clip) / resolution_geo))
        lon_data_tot_position = int(
            np.round((lonmin_clip - lonmin) / resolution_geo))
        lat_data_tot_position = int(
            np.round((latmax - latmax_clip) / resolution_geo))

        Data[Data < -9999.] = -9999.
        data_tot[lat_data_tot_position:lat_data_tot_position + size_y_clip,
                 lon_data_tot_position:lon_data_tot_position +
                 size_x_clip][data_tot[
                     lat_data_tot_position:lat_data_tot_position + size_y_clip,
                     lon_data_tot_position:lon_data_tot_position +
                     size_x_clip] == -9999] = Data[
                         lat_tiff_position:lat_tiff_position + size_y_clip,
                         lon_tiff_position:lon_tiff_position +
                         size_x_clip][data_tot[
                             lat_data_tot_position:lat_data_tot_position +
                             size_y_clip,
                             lon_data_tot_position:lon_data_tot_position +
                             size_x_clip] == -9999]

    geo_out = [lonmin, resolution_geo, 0.0, latmax, 0.0, -1 * resolution_geo]
    geo_out = tuple(geo_out)
    data_tot[data_tot < -9999.] = -9999.

    return (data_tot, geo_out)