Esempio n. 1
0
 def test(self):
     t = np.linspace(-10, 10, num=100)
     target = np.vectorize(self.func1)(t)
     wn = Wavenet(Morlet, 30, t, target)
     wn.smart_train(t, target, maxiter=500)
     plb.plot(t, target, label='Сигнал')
     plb.plot(t, wn.sim(t), label='Аппроксимация')
     plb.show()
Esempio n. 2
0
 def test(self):
     t = np.linspace(-10, 10, num=100)
     target = np.vectorize(self.func1)(t)
     wn = Wavenet(Morlet, 30, t, target)
     wn.smart_train(t, target, maxiter=500)
     plb.plot(t, target, label='Сигнал')
     plb.plot(t, wn.sim(t), label='Аппроксимация')
     plb.show()
Esempio n. 3
0
class WaveVAE(nn.Module):
    def __init__(self):
        super(WaveVAE, self).__init__()

        self.encoder = Wavenet(out_channels=2,
                               num_blocks=2,
                               num_layers=10,
                               residual_channels=128,
                               gate_channels=256,
                               skip_channels=128,
                               kernel_size=2,
                               cin_channels=80,
                               upsample_scales=[16, 16])
        self.decoder = Wavenet_Student(num_blocks_student=[1, 1, 1, 1, 1, 1],
                                       num_layers=10)
        self.log_eps = nn.Parameter(torch.zeros(1))

    def forward(self, x, c):
        # Encode
        mu_logs = self.encoder(x, c)
        mu = mu_logs[:, 0:1, :-1]
        logs = mu_logs[:, 1:, :-1]
        q_0 = Normal(mu.new_zeros(mu.size()), mu.new_ones(mu.size()))

        mean_q = (x[:, :, 1:] - mu) * torch.exp(-logs)

        # Reparameterization, Sampling from prior
        z = q_0.sample() * torch.exp(self.log_eps) + mean_q
        z_prior = q_0.sample()

        z = F.pad(z, pad=(1, 0), mode='constant', value=0)
        z_prior = F.pad(z_prior, pad=(1, 0), mode='constant', value=0)
        c_up = self.encoder.upsample(c)

        # Decode
        # x_rec : [B, 1, T] (first time step zero-padded)
        # mu_tot, logs_tot : [B, 1, T-1]
        x_rec, mu_p, log_p = self.decoder(z, c_up)
        x_prior = self.decoder.generate(z_prior, c_up)

        loss_recon = -0.5 * (-log(2.0 * pi) - 2. * log_p -
                             torch.pow(x[:, :, 1:] - mu_p, 2) * torch.exp(
                                 (-2.0 * log_p)))
        loss_kl = 0.5 * (mean_q**2 + torch.exp(self.log_eps)**2 -
                         1) - self.log_eps
        return x_rec, x_prior, loss_recon.mean(), loss_kl.mean()

    def generate(self, z, c):
        c_up = self.encoder.upsample(c)
        x_sample = self.decoder.generate(z, c_up)
        return x_sample
Esempio n. 4
0
def build_model():
    model = Wavenet(out_channels=2,
                    num_blocks=args.num_blocks,
                    num_layers=args.num_layers,
                    residual_channels=args.residual_channels,
                    gate_channels=args.gate_channels,
                    skip_channels=args.skip_channels,
                    kernel_size=args.kernel_size,
                    cin_channels=args.cin_channels,
                    upsample_scales=[16, 16])
    print(model)
    n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('number of teacher parameters:', n_params)
    return model
Esempio n. 5
0
    def __init__(self):
        super(WaveVAE, self).__init__()

        self.encoder = Wavenet(out_channels=2,
                               num_blocks=2,
                               num_layers=10,
                               residual_channels=128,
                               gate_channels=256,
                               skip_channels=128,
                               kernel_size=2,
                               cin_channels=80,
                               upsample_scales=[16, 16])
        self.decoder = Wavenet_Student(num_blocks_student=[1, 1, 1, 1, 1, 1],
                                       num_layers=10)
        self.log_eps = nn.Parameter(torch.zeros(1))
Esempio n. 6
0
    def __init__(self, q_channels, dil_width, res_width, skip_width,
                 kernel_width, n_dilations, n_blocks, learning_rate, log):
        '''
        Pre-processes audio, calls Wavenet to create the networks, creates the targets,
        prepares the loss calculation, optimizer and weights saver
        Args:
            q_channels: number of quantization levels
            dil_width:  width of dilation convolutional filters
            res_width: width of residual convolutional filters
            skip_width: width of skip channels for the softmax output
            kernel_width: filter with, first dimension of of kernel and gate dilation component
            n_dilations: Number of dilations to be used in every block
            n_blocks: Number of blocks in the network
            learning_rate: Learning rate to be used
            log: callback to log method
        '''
        self.q_channels = q_channels
        self.dilations = n_blocks * [2**x for x in range(n_dilations)]
        self.receptive_field = (kernel_width - 1) * sum(
            self.dilations) + kernel_width
        net = Wavenet(dilations=self.dilations,
                      kernel_width=kernel_width,
                      dilation_width=dil_width,
                      residual_width=res_width,
                      skip_width=skip_width,
                      q_channels=self.q_channels,
                      receptive_field=self.receptive_field,
                      log=log)

        input_batch = tf.placeholder(dtype=tf.float32, shape=None)
        one_hot = one_hot_mu_law_encode(input_batch, self.q_channels)
        log('Constructed wavenet.')
        raw_output = net.construct_network(one_hot)
        target_output = construct_target_output(one_hot, self.q_channels,
                                                self.receptive_field)
        log('Constructed targets.')
        loss = tf.nn.softmax_cross_entropy_with_logits(logits=tf.reshape(
            raw_output, [-1, self.q_channels]),
                                                       labels=target_output)
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
        log('Created optimizer.')
        trainable = tf.trainable_variables()
        self.loss = tf.reduce_mean(loss)
        self.optim = optimizer.minimize(self.loss, var_list=trainable)
        self.saver = tf.train.Saver(var_list=trainable)
        self.input_batch = input_batch
        self.net = net
Esempio n. 7
0
def build_model():
    model_t = Wavenet(out_channels=2,
                      num_blocks=args.num_blocks_t,
                      num_layers=args.num_layers_t,
                      residual_channels=args.residual_channels,
                      gate_channels=args.gate_channels,
                      skip_channels=args.skip_channels,
                      kernel_size=args.kernel_size,
                      cin_channels=args.cin_channels,
                      upsample_scales=[16, 16])
    return model_t
Esempio n. 8
0
def build_model():  #build wavenet object with arguments set in parser
    model = Wavenet(out_channels=2,
                    num_blocks=args.num_blocks,
                    num_layers=args.num_layers,
                    residual_channels=args.residual_channels,
                    gate_channels=args.gate_channels,
                    skip_channels=args.skip_channels,
                    kernel_size=args.kernel_size,
                    cin_channels=args.cin_channels,
                    upsample_scales=[16, 16])
    return model
Esempio n. 9
0
    def init_models(self):
        """
    instantiate the requested models and sent them to the device
    """

        # traditionals
        if self.nn_arch == 'conv-trad':
            self.models = {'cnn': ConvNetTrad(self.n_classes, self.data_size)}
        elif self.nn_arch == 'conv-fstride':
            self.models = {
                'cnn': ConvNetFstride4(self.n_classes, self.data_size)
            }
        elif self.nn_arch == 'conv-experimental':
            self.models = {
                'cnn': ConvNetExperimental(self.n_classes, self.data_size)
            }

            # adversarials
        elif self.nn_arch == 'adv-experimental':
            self.models = {
                'g': G_experimental(self.n_classes, self.data_size),
                'd': D_experimental(self.n_classes, self.data_size)
            }
        elif self.nn_arch == 'adv-experimental3':
            self.models = {
                'g': G_experimental(self.n_classes, self.data_size),
                'd': D_experimental(self.n_classes, self.data_size, out_dim=1)
            }
        elif self.nn_arch == 'adv-collected-encoder':
            self.models = {
                'g':
                G_experimental(self.n_classes,
                               self.data_size,
                               net_class='label-collect-encoder'),
                'd':
                D_experimental(self.n_classes,
                               self.data_size,
                               net_class='label-collect-encoder')
            }

            # cnns
        elif self.nn_arch == 'conv-encoder':
            self.models = {
                'cnn':
                ConvEncoderClassifierNet(self.n_classes,
                                         self.data_size,
                                         net_class='label-collect-encoder',
                                         fc_layer_type='fc1')
            }
        elif self.nn_arch == 'conv-encoder-stacked':
            self.models = {
                'cnn':
                ConvStackedEncodersNet(self.n_classes, self.data_size,
                                       self.encoder_model)
            }
        elif self.nn_arch == 'conv-latent':
            self.models = {
                'cnn': ConvLatentClassifier(self.n_classes, self.data_size)
            }

            # selected fc
        elif self.nn_arch == 'conv-encoder-fc1':
            self.models = {
                'cnn':
                ConvEncoderClassifierNet(self.n_classes,
                                         self.data_size,
                                         net_class='lim-encoder-6',
                                         fc_layer_type='fc1')
            }
        elif self.nn_arch == 'conv-encoder-fc3':
            self.models = {
                'cnn':
                ConvEncoderClassifierNet(self.n_classes,
                                         self.data_size,
                                         net_class='lim-encoder-6',
                                         fc_layer_type='fc3')
            }

            # limited encoders adv
        elif self.nn_arch == 'adv-lim-encoder':
            self.models = {
                'g':
                G_experimental(self.n_classes,
                               self.data_size,
                               net_class='lim-encoder'),
                'd':
                D_experimental(self.n_classes,
                               self.data_size,
                               net_class='lim-encoder')
            }
        elif self.nn_arch == 'adv-lim-encoder-6':
            self.models = {
                'g':
                G_experimental(self.n_classes,
                               self.data_size,
                               net_class='lim-encoder-6'),
                'd':
                D_experimental(self.n_classes,
                               self.data_size,
                               net_class='lim-encoder-6')
            }

            # limited encoder conv
        elif self.nn_arch == 'conv-lim-encoder':
            self.models = {
                'cnn':
                ConvEncoderClassifierNet(self.n_classes,
                                         self.data_size,
                                         net_class='lim-encoder')
            }

            # wavenet
        elif self.nn_arch == 'wavenet':
            self.models = {'wav': Wavenet(self.n_classes)}

            # not found
        else:
            print("***Network Architecture not found!")

        # send models to device
        self.models = dict(
            (k, model.to(self.device)) for k, model in self.models.items())
                       transform=transform)
validation_set = Testset(np.array([2]),
                         'ccmixter3/',
                         pad=field,
                         dilations1=dilations1,
                         device=device)
loadtr = data.DataLoader(training_set,
                         batch_size=1,
                         shuffle=True,
                         num_workers=0,
                         worker_init_fn=np.random.seed)
loadval = data.DataLoader(validation_set, batch_size=1, num_workers=0)
# In[6]:

#model = Unet(skipDim, quantization_channels, residualDim,device)
model = Wavenet(field, skipDim, residualDim, dilations0, dilations1)
#model = nn.DataParallel(model)
model = model.cuda()
criterion = nn.CrossEntropyLoss()
# in wavenet paper, they said crossentropyloss is far better than MSELoss
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-5)
# use adam to train

maxloss = np.zeros(50) + 100
# In[7]:

start_epoch = 0
if continueTrain:  # if continueTrain, the program will find the checkpoints
    if os.path.isfile(resumefile):
        print("=> loading checkpoint '{}'".format(resumefile))
        checkpoint = torch.load(resumefile)
Esempio n. 11
0
        batch_loss = 0

  print('--Training finished')



if __name__ == '__main__':
  """
  main
  """

  # input [num x batch x channel x time]
  x_train = torch.randn(1, 1, 1, 16000)
  y_train = torch.randint(0, 2, (1, 1, 16000))

  class_dict = {'a':0, 'b':1}

  # norm
  x_train = x_train / torch.max(torch.abs(x_train))

  # wavenet
  wavenet = Wavenet()
  print("wavenet: ", wavenet)

  # wavenet training
  wavenet_training(wavenet, x_train, y_train, class_dict, num_epochs=10, lr=0.001)

  # count params
  layer_params = wavenet.count_params()
  print("layer: {} sum: {}".format(layer_params, sum(layer_params)))
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

# In[5]:

params = {'batch_size': 1, 'shuffle': True, 'num_workers': 1}
training_set = Dataset(np.arange(0, songnum), np.arange(0, songnum),
                       'ccmixter2/x/', 'ccmixter2/y/')
validation_set = Dataset(np.arange(0, songnum), np.arange(0, songnum),
                         'ccmixter2/x/', 'ccmixter2/y/')
loadtr = data.DataLoader(training_set,
                         **params)  # pytorch dataloader, more faster than mine
loadval = data.DataLoader(validation_set, **params)

# In[6]:

model = Wavenet(pad, skipDim, quantization_channels, residualDim,
                dilations).cuda()
criterion = nn.CrossEntropyLoss()
# in wavenet paper, they said crossentropyloss is far better than MSELoss
# optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-5)
# use adam to train
# optimizer = optim.SGD(model.parameters(), lr = 0.1, momentum=0.9, weight_decay=1e-5)
# scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
# scheduler = MultiStepLR(optimizer, milestones=[20,40], gamma=0.1)

# In[7]:

if continueTrain:  # if continueTrain, the program will find the checkpoints
    if os.path.isfile(resumefile):
        print("=> loading checkpoint '{}'".format(resumefile))
        checkpoint = torch.load(resumefile)