Esempio n. 1
0
def save_profile_from_sdf(fname, nprofiles=3, direction='V', savecsv=True):

    data, pixelsize, headerdic = wpu.load_sdf_file(fname)

    saveFileSuf = fname.replace('.sdf', '')


    if 'V' in direction:

        xvec = wpu.realcoordvec(data.shape[0], pixelsize[0])[np.newaxis]
        data2save = np.c_[xvec.T]

        for j in np.linspace(0, np.shape(data)[1] - 1, nprofiles + 2, dtype=int):
            data2save = np.c_[data2save, data[:, j]]
    else:

        xvec = wpu.realcoordvec(data.shape[1], pixelsize[1])[np.newaxis]
        data2save = np.c_[xvec.T]

        for i in np.linspace(0, np.shape(data)[0] - 1, nprofiles + 2, dtype=int):
            data2save = np.c_[data2save, data[i, :]]


    if savecsv:

        wpu.save_csv_file(data2save,
                          wpu.get_unique_filename(saveFileSuf +
                                                  '_profiles_V', 'csv'),
                                                  headerList='bla')

    return data2save, headerdic
Esempio n. 2
0
def _lsq_fit_1D_parabola(yy, pixelsize):

    xx = wpu.realcoordvec(yy.shape[0], pixelsize)

    if np.all(np.isfinite(yy)):  # if there is no nan
        f = yy.flatten()
        x = xx.flatten()
    else:
        argNotNAN = np.isfinite(yy)
        f = yy[argNotNAN].flatten()
        x = xx[argNotNAN].flatten()

    X_matrix = np.vstack([x**2, x, x * 0.0 + 1]).T

    beta_matrix = np.linalg.lstsq(X_matrix, f)[0]

    fit = (beta_matrix[0] * xx**2 + beta_matrix[1] * xx + beta_matrix[2])

    if np.all(np.isfinite(yy)):
        mask = yy * 0.0 + 1.0
    else:
        mask = yy * 0.0 + 1.0
        mask[~argNotNAN] = np.nan

    return fit * mask, beta_matrix
Esempio n. 3
0
sx, sy, \
error, step = wps.speckleDisplacement(image, image_ref,
                                      halfsubwidth=halfsubwidth,
                                      halfTemplateSize=halfTemplateSize,
                                      subpixelResolution=subpixelResolution,
                                      npointsmax=npointsmax,
                                      ncores=ncores, taskPerCore=15,
                                      verbose=True)




totalS = np.sqrt(sx**2 + sy**2)

xVec2 = wpu.realcoordvec(sx.shape[1], pixelsize*step)
yVec2 = wpu.realcoordvec(sx.shape[0], pixelsize*step)


# %%
# =============================================================================
# Save data in hdf5 format
# =============================================================================

fname_output = fname[:-4] + '_' + wpu.datetime_now_str() + ".h5"
f = h5.File(fname_output, "w")


h5rawdata = f.create_group('raw')
f.create_dataset("raw/image_sample", data=image)
f.create_dataset("raw/image_ref", data=image_ref)
Esempio n. 4
0
def fit_radius_dpc(dpx,
                   dpy,
                   pixelsize,
                   radius4fit,
                   kwave,
                   saveFigFlag=False,
                   str4title=''):

    xVec = wpu.realcoordvec(dpx.shape[1], pixelsize[1])
    yVec = wpu.realcoordvec(dpx.shape[0], pixelsize[0])

    lim_x = np.argwhere(xVec >= -radius4fit * 1.01)[0, 0]
    lim_y = np.argwhere(yVec >= -radius4fit * 1.01)[0, 0]

    xmatrix, ymatrix = np.meshgrid(xVec[lim_x:-lim_x + 1],
                                   yVec[lim_y:-lim_y + 1])

    fig = plt.figure(figsize=(14, 5))
    fig.suptitle(str4title + 'Phase [rad]', fontsize=14)

    ax1 = plt.subplot(121)
    ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)

    ax1.plot(xVec[lim_x:-lim_x + 1] * 1e6,
             dpx[dpx.shape[1] // 4, lim_x:-lim_x + 1],
             '-ob',
             label='1/4')
    ax1.plot(xVec[lim_x:-lim_x + 1] * 1e6,
             dpx[dpx.shape[1] // 2, lim_x:-lim_x + 1],
             '-or',
             label='1/2')
    ax1.plot(xVec[lim_x:-lim_x + 1] * 1e6,
             dpx[dpx.shape[1] // 4 * 3, lim_x:-lim_x + 1],
             '-og',
             label='3/4')

    lin_fitx = np.polyfit(xVec[lim_x:-lim_x + 1], dpx[dpx.shape[1] // 2,
                                                      lim_x:-lim_x + 1], 1)
    lin_funcx = np.poly1d(lin_fitx)
    ax1.plot(xVec[lim_x:-lim_x + 1] * 1e6,
             lin_funcx(xVec[lim_x:-lim_x + 1]),
             '--c',
             lw=2,
             label='Fit 1/2')
    curvrad_x = kwave / (lin_fitx[0])

    wpu.print_blue('lin_fitx[0] x: {:.3g} m'.format(lin_fitx[0]))
    wpu.print_blue('lin_fitx[1] x: {:.3g} m'.format(lin_fitx[1]))

    wpu.print_blue('Curvature Radius of WF x: {:.3g} m'.format(curvrad_x))

    ax1.ticklabel_format(style='sci', axis='y', scilimits=(0, 1))
    ax1.set_xlabel(r'[$\mu m$]')
    ax1.set_ylabel('dpx [radians]')
    ax1.legend(loc=0, fontsize='small')
    ax1.set_title('Curvature Radius of WF {:.3g} m'.format(curvrad_x),
                  fontsize=16)
    ax1.set_adjustable('box-forced')

    ax2.plot(yVec[lim_y:-lim_y + 1] * 1e6,
             dpy[lim_y:-lim_y + 1, dpy.shape[0] // 4],
             '-ob',
             label='1/4')
    ax2.plot(yVec[lim_y:-lim_y + 1] * 1e6,
             dpy[lim_y:-lim_y + 1, dpy.shape[0] // 2],
             '-or',
             label='1/2')
    ax2.plot(yVec[lim_y:-lim_y + 1] * 1e6,
             dpy[lim_y:-lim_y + 1, dpy.shape[0] // 4 * 3],
             '-og',
             label='3/4')

    lin_fity = np.polyfit(yVec[lim_y:-lim_y + 1], dpy[lim_y:-lim_y + 1,
                                                      dpy.shape[0] // 2], 1)
    lin_funcy = np.poly1d(lin_fity)
    ax2.plot(yVec[lim_y:-lim_y + 1] * 1e6,
             lin_funcy(yVec[lim_y:-lim_y + 1]),
             '--c',
             lw=2,
             label='Fit 1/2')
    curvrad_y = kwave / (lin_fity[0])
    wpu.print_blue('Curvature Radius of WF y: {:.3g} m'.format(curvrad_y))

    ax2.ticklabel_format(style='sci', axis='y', scilimits=(0, 1))
    ax2.set_xlabel(r'[$\mu m$]')
    ax2.set_ylabel('dpy [radians]')
    ax2.legend(loc=0, fontsize='small')
    ax2.set_title('Curvature Radius of WF {:.3g} m'.format(curvrad_y),
                  fontsize=16)
    ax2.set_adjustable('box-forced')

    if saveFigFlag:
        wpu.save_figs_with_idx(fname2save, extension='png')
    plt.show(block=False)
Esempio n. 5
0
error_raw = np.array(f['displacement/error'])[::stride, ::stride]

xVec_raw = np.array(f['displacement/xvec'])[::stride]
yVec_raw = np.array(f['displacement/yvec'])[::stride]

#==============================================================================
# %% Crop
#==============================================================================

idx4crop = wpu.graphical_roi_idx(np.sqrt(sx_raw**2 + sy_raw**2), verbose=True)

sx = wpu.crop_matrix_at_indexes(sx_raw, idx4crop)
sy = wpu.crop_matrix_at_indexes(sy_raw, idx4crop)
error = wpu.crop_matrix_at_indexes(error_raw, idx4crop)

xVec = wpu.realcoordvec(sx.shape[1], pixelsizeImg)
yVec = wpu.realcoordvec(sx.shape[0], pixelsizeImg)

xmatrix, ymatrix = np.meshgrid(xVec, yVec)

#==============================================================================
# %% Calculations of physical quantities
#==============================================================================

totalS = np.sqrt(sx**2 + sy**2)

# Differenctial Phase
dpx = kwave * np.arctan2(sx * pixelsizeDetector, distDet2sample)
dpy = kwave * np.arctan2(sy * pixelsizeDetector, distDet2sample)

# Differenctial Thickness
def curv_from_height(height,
                     virtual_pixelsize,
                     grazing_angle=0.0,
                     projectionFromDiv=1.0,
                     labels=[],
                     xlabel='x',
                     ylabel='Curvature',
                     titleStr='',
                     saveFileSuf=''):

    ls_cycle, lc_cycle = wpu.line_style_cycle(['-'], ['o', 's', 'd', '^'],
                                              ncurves=height.shape[1] - 1,
                                              cmap_str='gist_rainbow_r')

    if grazing_angle // .00001 > 0:
        projection = 1 / np.sin(grazing_angle) * projectionFromDiv
    else:
        projection = projectionFromDiv

    projected_pixel = virtual_pixelsize * projection
    xvec = wpu.realcoordvec(height.shape[0] - 2, projected_pixel)

    print('projected_pixel')
    print(projected_pixel)

    plt.figure(figsize=(12, 12 * 9 / 16))
    list_curv = [xvec]

    header = [xlabel + ' [m]']

    for j_line in range(1, height.shape[1]):

        curv = np.diff(np.diff(height[:, j_line])) / projected_pixel**2

        if j_line == 1:
            factor_x, unit_x = wpu.choose_unit(xvec)

            #factor_y, unit_y = wpu.choose_unit(curv)

        list_curv.append(curv)
        header.append(labels[j_line - 1])

        plt.plot(xvec * factor_x,
                 curv,
                 next(ls_cycle),
                 c=next(lc_cycle),
                 label=labels[j_line - 1])

    marginx = 0.1 * np.ptp(xvec * factor_x)
    plt.xlim(
        [np.min(xvec * factor_x) - marginx,
         np.max(xvec * factor_x) + marginx])
    plt.xlabel(xlabel + r' [$' + unit_x + ' m$]')
    plt.ylabel(ylabel + r'[$m^{-1}$]')
    plt.legend(loc=0, fontsize=12)

    if grazing_angle // .00001 > 0:

        plt.title(titleStr + 'Mirror Curvature,\n' +
                  'grazing angle {:.2f} mrad,\n'.format(grazing_angle * 1e3) +
                  'projection due divergence = ' +
                  r'$ \times $ {:.2f}'.format(projectionFromDiv))
    else:
        plt.title(titleStr + 'Curvature')

    plt.tight_layout()
    wpu.save_figs_with_idx(saveFileSuf)
    plt.show()

    data2saveV = np.asarray(list_curv).T

    header.append(ylabel + ' [1/m]')

    if grazing_angle // .00001 > 0:
        header.append(', grazing_angle = {:.4g}'.format(grazing_angle))

    if projectionFromDiv // 1 != 1:
        header.append('projection due divergence = ' +
                      '{:.2f}x'.format(projectionFromDiv))

    wpu.save_csv_file(data2saveV,
                      wpu.get_unique_filename(saveFileSuf + '_curv_' + xlabel,
                                              'csv'),
                      headerList=header)

    return np.asarray(list_curv).T
Esempio n. 7
0
def curv_from_height(height, virtual_pixelsize,
                     grazing_angle=0.0, projectionFromDiv=1.0,
                     labels=[],
                     xlabel='x', ylabel='Curvature',
                     titleStr='', saveFileSuf=''):

    ls_cycle, lc_cycle = wpu.line_style_cycle(['-'], ['o', 's', 'd', '^'],
                                              ncurves=height.shape[1] - 1,
                                              cmap_str='gist_rainbow_r')

    if grazing_angle//.00001 > 0:
        projection = 1/np.sin(grazing_angle)*projectionFromDiv
    else:
        projection = projectionFromDiv

    projected_pixel = virtual_pixelsize*projection
    xvec = wpu.realcoordvec(height.shape[0]-2, projected_pixel)

    print('projected_pixel')
    print(projected_pixel)

    plt.figure(figsize=(12, 12*9/16))
    list_curv = [xvec]

    header = [xlabel + ' [m]']

    for j_line in range(1, height.shape[1]):

        curv = np.diff(np.diff(height[:, j_line]))/projected_pixel**2

        if j_line == 1:
            factor_x, unit_x = wpu.choose_unit(xvec)

            #factor_y, unit_y = wpu.choose_unit(curv)

        list_curv.append(curv)
        header.append(labels[j_line - 1])

        plt.plot(xvec*factor_x, curv,
                 next(ls_cycle), c=next(lc_cycle),
                 label=labels[j_line - 1])

    marginx = 0.1*np.ptp(xvec*factor_x)
    plt.xlim([np.min(xvec*factor_x)-marginx,
              np.max(xvec*factor_x)+marginx])
    plt.xlabel(xlabel + r' [$' + unit_x + ' m$]')
    plt.ylabel(ylabel + r'[$m^{-1}$]')
    plt.legend(loc=0, fontsize=12)

    if grazing_angle//.00001 > 0:

        plt.title(titleStr + 'Mirror Curvature,\n' +
                  'grazing angle {:.2f} mrad,\n'.format(grazing_angle*1e3) +
                  'projection due divergence = ' +
                  r'$ \times $ {:.2f}'.format(projectionFromDiv))
    else:
        plt.title(titleStr + 'Curvature')

    plt.tight_layout()
    wpu.save_figs_with_idx(saveFileSuf)
    plt.show()

    data2saveV = np.asarray(list_curv).T

    header.append(ylabel + ' [1/m]')

    if grazing_angle//.00001 > 0:
        header.append(', grazing_angle = {:.4g}'.format(grazing_angle))

    if projectionFromDiv//1 != 1:
        header.append('projection due divergence = ' +
                      '{:.2f}x'.format(projectionFromDiv))

    wpu.save_csv_file(data2saveV,
                      wpu.get_unique_filename(saveFileSuf +
                                              '_curv_' + xlabel, 'csv'),
                      headerList=header)

    return np.asarray(list_curv).T
yVec_raw =  np.array(f['displacement/yvec'])

#==============================================================================
# %% Crop
#==============================================================================

idx4crop = wpu.graphical_roi_idx(np.sqrt(sx_raw**2 + sy_raw**2), verbose=True)



sx = wpu.crop_matrix_at_indexes(sx_raw, idx4crop)
sy = wpu.crop_matrix_at_indexes(sy_raw, idx4crop)
error = wpu.crop_matrix_at_indexes(error_raw, idx4crop)


xVec = wpu.realcoordvec(sx.shape[1], pixelsizeImg)
yVec = wpu.realcoordvec(sx.shape[0], pixelsizeImg)

xmatrix, ymatrix = np.meshgrid(xVec, yVec)




#==============================================================================
# %% Calculations of physical quantities
#==============================================================================


totalS = np.sqrt(sx**2 + sy**2)

Esempio n. 9
0
sx, sy, \
error, step = wps.speckleDisplacement(image, image_ref,
                                      halfsubwidth=halfsubwidth,
                                      halfTemplateSize=halfTemplateSize,
                                      subpixelResolution=subpixelResolution,
                                      npointsmax=npointsmax,
                                      ncores=ncores, taskPerCore=15,
                                      verbose=True)




totalS = np.sqrt(sx**2 + sy**2)

xVec2 = wpu.realcoordvec(sx.shape[1], pixelsize*step)
yVec2 = wpu.realcoordvec(sx.shape[0], pixelsize*step)


# %%
# =============================================================================
# Save data in hdf5 format
# =============================================================================

fname_output = fname[:-4] + '_' + wpu.datetime_now_str() + ".h5"
f = h5.File(fname_output, "w")


h5rawdata = f.create_group('raw')
f.create_dataset("raw/image_sample", data=image)
f.create_dataset("raw/image_ref", data=image_ref)