def test_get_stat_data_nulls_with_denominator_key(self): table = FieldTable(['household goods'], universe='Households', denominator_key='total households') self.load_data( table, """ lev,code,fridge,10 lev,code,computer,5 lev,code,total households, """) data, total = get_stat_data(['household goods'], self.geo, self.s) self.assertEqual(total, None) self.assertEqual(data['Fridge']['numerators']['this'], 10) self.assertIsNone(data['Fridge']['values']['this']) self.assertEqual(data['Computer']['numerators']['this'], 5) self.assertIsNone(data['Computer']['values']['this'])
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # TODO: Add comments so that we can quickly see categories/topics # TODO: Rework format to a standard FieldTable( ['rural or urban', 'sex', 'age in completed years'], year='2009' ) FieldTable( ['employment activity status', 'sex'], universe='People aged 5 years and older', year='2009' ) FieldTable( ['school attendance', 'sex'], universe='People aged 3 years and older', year='2009' ) FieldTable( ['highest education level reached'], universe='People aged 3 years and older', year='2009' ) FieldTable( ['main mode of human waste disposal'], universe='Households', year='2009' ) FieldTable(
from django.conf import settings from wazimap.data.tables import FieldTable, SimpleTable # Define our tables for each profile so the data API can discover them. # All profiles # Census tables if settings.WAZIMAP['default_profile'] == 'census': FieldTable(['age groups in 5 years']) FieldTable(['age in completed years']) FieldTable([ 'electricity for cooking', 'electricity for heating', 'electricity for lighting' ]) FieldTable(['energy or fuel for cooking']) FieldTable(['energy or fuel for heating']) FieldTable(['energy or fuel for lighting']) FieldTable(['gender']) FieldTable(['gender', 'marital status']) FieldTable(['gender', 'population group']) FieldTable(['gender', 'age groups in 5 years']) FieldTable(['highest educational level']) FieldTable(['highest educational level'], id="highesteducationallevel20", universe='Individuals 20 and older') FieldTable(['language'], description='Population by primary language spoken at home') FieldTable(['employed individual monthly income'], universe='Employed individuals') FieldTable(['employed individual annual income'],
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. FieldTable(['main type of cooking fuel'], universe='Households', table_per_level=False)
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # TODO: Add comments so that we can quickly see categories/topics # TODO: Rework format to a standard # FieldTable(['code', 'name', 'region', 'district', 'ward', 'ownership', 'latitude', 'longitude', # 'pass_rate', 'change_previous_year_pass_rate', 'avg_gpa', 'chane_previous_year_gpa', 'rank', # 'year_of_result', 'more_than_40', 'national_rank_all', 'regional_rank_all', # 'district_rank_all'], id='secondary_school', dataset="School's League", year='2017') FieldTable([ 'code', 'name', 'region', 'district', 'ward', 'ownership', 'gender', 'latitude', 'longitude', 'avg_gpa', 'year_of_result', 'more_than_40', 'national_rank_all', 'regional_rank_all' ], id='secondary_school', dataset="School's League", year='2017')
from wazimap.data.tables import FieldTable FieldTable(['rural or urban'], year='2014') FieldTable(['sex'], year='2014') FieldTable(['household'], year='2014') FieldTable(['household distribution by energy source'], year='2014') FieldTable(['household distribution by light source'], year='2014') FieldTable(['household percentage by permanency'], year='2014') FieldTable(['presidential candidate'], year='2014') FieldTable(['disability'], year='2014') FieldTable(['disabled or not'], year='2014')
from wazimap.data.tables import FieldTable FieldTable(['rural or urban'], table_per_level=False) FieldTable(['sex'], table_per_level=False) FieldTable(['household'], table_per_level=False) FieldTable(['household distribution by energy source'], table_per_level=False) FieldTable(['household distribution by light source'], table_per_level=False) FieldTable(['presidential candidate'], table_per_level=False) FieldTable(['disability'], table_per_level=False) FieldTable(['disabled or not'], table_per_level=False)
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. FieldTable(['rural or urban', 'sex', 'age in completed years'], table_per_level=False) FieldTable(['employment activity status', 'sex'], universe='People aged 5 years and older', table_per_level=False) FieldTable(['school attendance', 'sex'], universe='People aged 3 years and older', table_per_level=False) FieldTable(['highest education level reached'], universe='People aged 3 years and older', table_per_level=False) FieldTable(['main mode of human waste disposal'], universe='Households', table_per_level=False) FieldTable(['main source of water'], universe='Households', table_per_level=False) FieldTable(['main type of lighting fuel'], universe='Households', table_per_level=False) FieldTable(['main type of floor material'], universe='Households', table_per_level=False) FieldTable(['main type of wall material'], universe='Households', table_per_level=False) FieldTable(['main type of roofing material'], universe='Households',
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # Household tables FieldTable(['rural population'], universe='Population', table_per_level=False) FieldTable(['area', 'sex'], universe='Population', table_per_level=False) FieldTable(['census_year', 'measure'], universe='A2-Decadal Variation', table_per_level=False) FieldTable(['census_year', 'sex_vis'], universe='VISUAL', table_per_level=False) FieldTable(['area', 'sex', 'literacy'], universe='Population', table_per_level=False) FieldTable(['area','village_town_comparison'], universe='A3APPENDIX', table_per_level=False) FieldTable(['religion', 'area', 'sex'], universe='Religion', table_per_level=False) FieldTable(['age', 'area', 'sex'], universe='Age', table_per_level=False) FieldTable(['village_town_measures','area'], universe='A1-', table_per_level=False) FieldTable(['education', 'area', 'sex'], universe='Education', table_per_level=False) FieldTable(['houseless_population','area', 'sex'], universe='A7-Houseless', table_per_level=False) FieldTable(['sc_houseless_population','area', 'sex'], universe='A8-SC_Houseless', table_per_level=False) FieldTable(['st_houseless_population','area', 'sex'], universe='A9-ST_Houseless', table_per_level=False) FieldTable(['village_measures','population_range'], universe='A3-Inhabited Villages', table_per_level=False) FieldTable(['maritalstatus', 'area', 'sex'], universe='Relation', table_per_level=False) FieldTable(['workertype','age_group','area','sex'], universe='B1-Workerstype', table_per_level=False) FieldTable(['sc_workertype','age_group','area','sex'], universe='B1SC-Workerstype', table_per_level=False) FieldTable(['st_workertype','age_group','area','sex'], universe='B1ST-Workerstype', table_per_level=False) FieldTable(['workers', 'area', 'workerssex'], universe='Workers', table_per_level=False) FieldTable(['workertype','education_level', 'area', 'sex'], universe='B3', table_per_level=False) FieldTable(['education_level', 'area', 'sex_vis'], universe='VISUAL', table_per_level=False)
from wazimap.data.tables import FieldTable, SimpleTable # Define our tables so the data API can discover them. # Household tables FieldTable(['main type of cooking fuel'], universe='Households', description='Main type of cooking fuel', dataset='National Population and Housing Census 2011', year='2011', table_per_level=False) FieldTable(['drinking water source'], universe='Households', description='Drinking water source', dataset='National Population and Housing Census 2011', year='2011', table_per_level=False) FieldTable(['lighting fuel'], universe='Households', description='Main type of lighting fuel', dataset='National Population and Housing Census 2011', year='2011', table_per_level=False) FieldTable(['foundation type'], universe='Households', description='Building foundation', dataset='National Population and Housing Census 2011', year='2011', table_per_level=False)
from wazimap.data.tables import FieldTable # Census data tables FieldTable(['area', 'sex', 'year'], id='population_2001', universe='Population') FieldTable(['area', 'sex', 'year'], id='population_2011', universe='Population') FieldTable(['area', 'sex', 'year'], id='population_default', universe='Population') FieldTable(['area', 'literacy', 'sex', 'year'], id='literacy_2001', universe='Literacy') FieldTable(['area', 'literacy', 'sex', 'year'], id='literacy_2011', universe='Literacy') FieldTable(['area', 'literacy', 'sex', 'year'], id='literacy_default', universe='Literacy') FieldTable(['religion', 'year'], id='religion_2011', universe='Religion') FieldTable(['religion', 'year'], id='religion_default', universe='Religion') FieldTable(['area', 'sex', 'education', 'year'], id='education_2011', universe='Education') FieldTable(['area', 'sex', 'education', 'year'],
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # Household tables FieldTable(['rural population'], universe='Population', table_per_level=False) FieldTable(['area', 'sex'], universe='Population', table_per_level=False) FieldTable(['area', 'sex', 'literacy'], universe='Population', table_per_level=False) FieldTable(['religion', 'area', 'sex'], universe='Religion', table_per_level=False) FieldTable(['age', 'area', 'sex'], universe='Age', table_per_level=False) FieldTable(['education', 'area', 'sex'], universe='Education', table_per_level=False) FieldTable(['maritalstatus', 'area', 'sex'], universe='Relation', table_per_level=False) FieldTable(['workers', 'area', 'workerssex'], universe='Workers', table_per_level=False)
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # TODO: Add comments so that we can quickly see categories/topics # TODO: Rework format to a standard FieldTable(['rural or urban', 'sex', 'age in completed years'], year='2009', dataset='Census') FieldTable(['employment activity status', 'sex'], universe='People aged 5 years and older', year='2009', dataset='Census') FieldTable(['school attendance', 'sex'], universe='People aged 3 years and older', year='2009', dataset='Census') FieldTable(['highest education level reached'], universe='People aged 3 years and older', year='2009', dataset='Census') FieldTable(['main mode of human waste disposal'], universe='Households', year='2009', dataset='Census') FieldTable(id='religion', fields=['religion'], year=2009, dataset='Census') FieldTable(id='household_heads', fields=['Household_Heads'], year=2009, dataset='Census')
from wazimap.data.tables import FieldTable, SimpleTable # Define our tables so the data API can discover them. FieldTable(['rural or urban', 'sex', 'age in completed years']) #tz wards do not have population breakdown by age so they have a separate table FieldTable(['rural or urban', 'sex']) FieldTable(['employment activity status', 'sex'], universe='People aged 5 years and older') FieldTable(['school attendance', 'sex'], universe='People aged 3 years and older') FieldTable(['highest education level reached'], universe='People aged 3 years and older') FieldTable(['main mode of human waste disposal'], universe='Households') FieldTable(['main source of water'], universe='Households') FieldTable(['main type of lighting fuel'], universe='Households') FieldTable(['main type of floor material'], universe='Households') FieldTable(['main type of wall material'], universe='Households') FieldTable(['main type of roofing material'], universe='Households') FieldTable(['literacy test']) FieldTable(['pepfar']) FieldTable(['school attendance']) FieldTable(['pupil teacher ratios']) FieldTable(['school amenity']) FieldTable(['causes of death under five']) FieldTable(['causes of death over five']) FieldTable(['inpatient diagnosis over five']) FieldTable(['inpatient diagnosis under five']) FieldTable(['outpatient diagnosis over five']) FieldTable(['outpatient diagnosis under five']) FieldTable(['family planning clients']) FieldTable(['place of delivery'])
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # Household tables FieldTable(['main type of cooking fuel'], universe='Households', table_per_level=False) FieldTable(['drinking water source'], universe='Households', table_per_level=False) FieldTable(['lighting fuel'], universe='Households', table_per_level=False) FieldTable(['foundation type'], universe='Households', table_per_level=False) FieldTable(['outer wall type'], universe='Households', table_per_level=False) FieldTable(['roof type'], universe='Households', table_per_level=False) FieldTable(['toilet type'], universe='Households', table_per_level=False) FieldTable(['home ownership'], universe='Households', table_per_level=False) # Education tables FieldTable(['education level passed', 'sex'], universe='People aged 5 years and older', table_per_level=False) FieldTable(['literacy', 'sex'], universe='People aged 5 years and older',
from wazimap.data.tables import FieldTable FieldTable(['GNI_Year']) FieldTable(['Life_Expectancy_Year']) FieldTable(['Population_Year']) FieldTable(['Crop_Production_Year']) FieldTable(['GDP_Year'], value_type='Float') FieldTable(['Rank', 'year']) # Percentage of population ages 15-49 FieldTable(['HIV_Prevalence_Year'], value_type='Float') # literate Percentage of population above 15 years FieldTable(['Literacy_Year']) FieldTable(['Indicator'], id='hd_landscape', value_type='Float')
from wazimap.data.tables import FieldTable, SimpleTable FieldTable(['population group'], id='populationgroup_2016', year='2016', dataset='Census')
from wazimap.data.tables import FieldTable, SimpleTable # Ipv4 FieldTable(['users_or_not'], id='users_in_country', universe='Internet users', value_type='BIGINT', description='What percentage of a country are internet users', dataset='Stats from stats.labs.apnic.net', year='2017') FieldTable(['country_or_world'], id='users_in_world', universe='Internet users', value_type='BIGINT', description='How much of the worlds internet users does this country make make up of', dataset='Stats from stats.labs.apnic.net', year='2017') FieldTable(['asn'], id='market_share', universe='Internet users', value_type='BIGINT', description='The market share in a given country.', dataset='Stats from stats.labs.apnic.net',
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. FieldTable(['rural or urban', 'sex', 'age in completed years'], table_per_level=False) #FieldTable(['employment activity status', 'sex'], universe='People aged 5 years and older', table_per_level=False) #FieldTable(['school attendance', 'sex'], universe='People aged 3 years and older', table_per_level=False) #FieldTable(['highest education level reached'], universe='People aged 3 years and older', table_per_level=False) #FieldTable(['main mode of human waste disposal'], universe='Households', table_per_level=False) #FieldTable(['main source of water'], universe='Households', table_per_level=False) #FieldTable(['main type of lighting fuel'], universe='Households', table_per_level=False) #FieldTable(['main type of floor material'], universe='Households', table_per_level=False) #FieldTable(['main type of wall material'], universe='Households', table_per_level=False) #FieldTable(['main type of roofing material'], universe='Households', table_per_level=False)
from wazimap.data.tables import FieldTable FieldTable(['population_sex_2006'], id='population_sex_2006', year='2006', dataset='Census') FieldTable(['population_sex_2007'], id='population_sex_2007', year='2007', dataset='Census') FieldTable(['population_sex_2009'], id='population_sex_2009', year='2009', dataset='Census') FieldTable(['population_sex_2011'], id='population_sex_2011', year='2011', dataset='Census') FieldTable(['population_sex_2012'], id='population_sex_2012', year='2012', dataset='Census') FieldTable(['population_sex_2013'], id='population_sex_2013', year='2013', dataset='Census') FieldTable(['population_residence_2009'], id='population_residence_2009', year='2006', dataset='Census')
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. # TODO: Add comments so that we can quickly see categories/topics # TODO: Rework format to a standard FieldTable([ 'code', 'name', 'region', 'district', 'ward', 'ownership', 'latitude', 'longitude', 'pass_rate', 'change_previous_year_pass_rate', 'avg_gpa', 'chane_previous_year_gpa', 'rank', 'year_of_result', 'more_than_40', 'national_rank_all', 'regional_rank_all', 'district_rank_all' ], id='secondary_schools') FieldTable([ 'code', 'name', 'region', 'district', 'ward', 'ownership', 'gender', 'latitude', 'longitude', 'avg_gpa', 'year_of_result', 'more_than_40', 'national_rank_all', 'regional_rank_all' ], id='secondary_school') #FieldTable(['university_name', 'course_name', 'general_major', 'cumpulsory_subjects_ar', 'other_subjects_ar'], id='universityfinder') # # FieldTable([], id='olevel_subject_performance') # FieldTable([], id='alevel_subject_performance') # FieldTable([], id='olevel_student_performance') # FieldTable([], id='alevel_student_performance') # FieldTable([], id='olevel_overall_performance') # FieldTable([], id='alevel_overall_performance')
from wazimap.data.tables import FieldTable # Define our tables so the data API can discover them. FieldTable(['gender', 'age group']) FieldTable(['gender', 'rural or urban']) # FieldTable(['rural or urban', 'sex', 'age in completed years'], table_per_level=False) # FieldTable(['employment activity status', 'sex'], universe='People aged 5 years and older', table_per_level=False) # FieldTable(['school attendance', 'sex'], universe='People aged 3 years and older', table_per_level=False) # FieldTable(['highest education level reached'], universe='People aged 3 years and older', table_per_level=False) # FieldTable(['main mode of human waste disposal'], universe='Households', table_per_level=False) # FieldTable(['main source of water'], universe='Households', table_per_level=False) # FieldTable(['main type of lighting fuel'], universe='Households', table_per_level=False) # FieldTable(['main type of floor material'], universe='Households', table_per_level=False) # FieldTable(['main type of wall material'], universe='Households', table_per_level=False) # FieldTable(['main type of roofing material'], universe='Households', table_per_level=False)
def field_table(self, fields, data_str): table = FieldTable(fields) self.load_data(table, data_str)
from django.conf import settings from wazimap.data.tables import SimpleTable, FieldTable FieldTable( ['gender', 'population group'], id='youth_gender_population_group', universe='Youth', year='2011') FieldTable( ['population group', 'gender'], id='youth_population_group_gender', universe='Youth', year='2011', db_table='youth_gender_population_group') FieldTable( ['age groups in 10 years'], id='youth_age_groups_in_10_years', universe='Population', year='2011') FieldTable(['language'], id='youth_language', universe='Youth', year='2011') FieldTable( ['province of birth'], id='youth_province_of_birth', universe='Youth', year='2011') FieldTable( ['region of birth'], id='youth_region_of_birth', universe='Youth', year='2011') FieldTable(
from wazimap.data.tables import FieldTable, SimpleTable # Define our tables so the data API can discover them. # Household tables FieldTable(['main type of cooking fuel'], universe='Households', description='Main type of cooking fuel', dataset='National Population and Housing Census 2011', year='2011') FieldTable(['drinking water source'], universe='Households', description='Drinking water source', dataset='National Population and Housing Census 2011', year='2011') FieldTable(['lighting fuel'], universe='Households', description='Main type of lighting fuel', dataset='National Population and Housing Census 2011', year='2011') FieldTable(['foundation type'], universe='Households', description='Building foundation', dataset='National Population and Housing Census 2011', year='2011') FieldTable(['outer wall type'], universe='Households', description='Outer wall of building',
from wazimap.data.tables import FieldTable FieldTable(['financial_year'], value_type='Float') FieldTable(['expenditure', 'year'], value_type='Float') FieldTable(['conditional_fund'], value_type='Float')