Esempio n. 1
0
def test_general():
    for condition_custom in [{}, {"x_order": OrderNCHW}]:
        condition = dict(condition_default)
        condition.update(condition_custom)

        vx = np.random.rand(2, 3, 4, 5) - 0.5
        vy = 1 / (1 + np.exp(-vx))

        x = Variable(vx.shape, order=OrderNHWC)
        y, = Sigmoid(None)(x)

        x.change_order(condition["x_order"])
        y.change_order(condition["y_order"])

        generate_kernel_test_case(
            description=f"Sigmoid: " +
            (", ".join([f"{k}={v}" for k, v in condition_custom.items()])),
            backend=condition["backend"],
            graph=Graph([x], [y]),
            inputs={
                x: ConstantVariable(vx, OrderNHWC).change_order(x.order).data
            },
            expected={
                y: ConstantVariable(vy, OrderNHWC).change_order(y.order).data
            },
            raise_skip=False)

    raise SkipTest
Esempio n. 2
0
def do_activation(activation: any, x: Variable) -> Variable:
    if activation is keras.activations.relu:
        return Relu(None)(x)[0]

    elif activation is keras.activations.sigmoid:
        return Sigmoid(None)(x)[0]

    elif activation is keras.activations.hard_sigmoid:
        return HardSigmoid(None)(x)[0]

    elif activation is keras.activations.softplus:
        return Softplus(None, beta=1.0)(x)[0]

    elif activation is keras.activations.softsign:
        return Softsign(None)(x)[0]

    elif activation is keras.activations.softmax:
        return Softmax(None, axis=x.order.axes[-1])(x)[0]

    elif activation is keras.activations.elu:
        return Elu(None)(x)[0]

    elif activation is keras.activations.tanh:
        return Tanh(None)(x)[0]

    elif activation is keras.activations.linear:
        return x

    else:
        raise NotImplementedError(
            f"[KerasConverter] Unknown activation: {activation}")
Esempio n. 3
0
def template(x_order=OrderNHWC, y_order=OrderNHWC, description: str = ""):
    vx = np.random.rand(2, 3, 4, 5) - 0.5
    vy = 1 / (1 + np.exp(-vx))

    x = Variable(vx.shape, order=OrderNHWC)
    y, = Sigmoid(None)(x)

    x.change_order(x_order)
    y.change_order(y_order)

    generate_kernel_test_case(
        description=f"Sigmoid {description}",
        graph=Graph([x], [y]),
        inputs={
            x: np.transpose(vx, [OrderNHWC.axes_dict[a] for a in x.order.axes])
        },
        expected={
            y: np.transpose(vy, [OrderNHWC.axes_dict[a] for a in y.order.axes])
        },
    )
Esempio n. 4
0
def template(r=1.0, x_order=OrderNHWC, y_order=OrderNHWC, description: str = ""):
    vx = (np.random.rand(2, 3, 4, 5) - 0.5) * r
    vy = 1 / (1 + np.exp(-vx))
    # This produces very small positive value (< 1e-7) when vx is negative large.
    # Actual implementation uses tanh(0.5f * x0) * 0.5f + 0.5f
    # In the case tanh is used, the result saturates to 0.0 when vs is negative large.
    # ABS_EPS is set to allow such case.

    x = Variable(vx.shape, order=OrderNHWC)
    y, = Sigmoid(None)(x)

    x.change_order(x_order)
    y.change_order(y_order)

    generate_kernel_test_case(
        description=f"Sigmoid {description}",
        graph=Graph([x], [y]),
        inputs={x: np.transpose(vx, [OrderNHWC.axes_dict[a] for a in x.order.axes])},
        expected={y: np.transpose(vy, [OrderNHWC.axes_dict[a] for a in y.order.axes])},
        ABS_EPS=1e-7
    )
Esempio n. 5
0
def _convert_sigmoid(converter: ONNXConverter, onnx_op: INodeProto):
    x0 = converter.get_variable(onnx_op.input[0])
    y, = Sigmoid(None)(x0)
    converter.set_variable(onnx_op.output[0], y)
Esempio n. 6
0
def _convert_sigmoid(converter: ChainerConverter,
                     c_op: "chainer.functions.Sigmoid"):
    x = converter.get_variable(c_op.inputs[0])
    y, = Sigmoid(None)(x)
    converter.set_variable(c_op.outputs[0](), y)