Esempio n. 1
0
 def __init__(self, num_pixels, layers, H_decision, imageSize):
     super(PropagationOnly_SharedPixel, self).__init__()
     weightMask, diagMask, edgeMask, cornerMask = generateFixedWeightMask_PredPrey(
         imageSize)
     self.iteratedLayer_Pred = RangePropgation_SharedPixel(
         num_pixels, num_pixels, layers, weightMask, diagMask, edgeMask,
         cornerMask)
Esempio n. 2
0
 def __init__(self, num_pixels, layers, H_decision, imageSize):
     super(FixedAll_PredPrey, self).__init__()
     weightMask, diagMask, edgeMask, cornerMask = generateFixedWeightMask_PredPrey(
         imageSize)
     self.iteratedLayer = RecurrentDecision_FixedAll(
         num_pixels, num_pixels, layers, weightMask, diagMask, edgeMask,
         cornerMask)
 def __init__(self, num_pixels, layers, H_decision, imageSize):
     super(Fixed_PredPrey, self).__init__()
     weightMask, diagMask, edgeMask, cornerMask = generateFixedWeightMask_PredPrey(
         imageSize)
     self.iteratedLayer = FixedPropagationDecision(num_pixels, num_pixels,
                                                   layers, weightMask,
                                                   diagMask, edgeMask,
                                                   cornerMask)
    def __init__(self, num_pixels, layers, H_decision, imageSize):
        super(RecurrentSharedPixel_PredPrey, self).__init__()
        weightMask, diagMask, edgeMask, cornerMask = generateFixedWeightMask_PredPrey(
            imageSize)
        self.iteratedLayer_Pred = RepeatedLayersSharedPixel(
            num_pixels, num_pixels, layers, weightMask, diagMask, edgeMask,
            cornerMask)

        self.tanh = nn.Tanh()
Esempio n. 5
0
cmap2._init()  # create the _lut array, with rgba values
cmap3._init()

# create your alpha array and fill the colormap with them.
# here it is progressive, but you can create whathever you want
alphas = np.linspace(0, 0.8, cmap2.N + 3)
cmap2._lut[:, -1] = alphas
cmap3._lut[:, -1] = alphas

# General parameters that would get set in other code

image_size = 15
N = image_size
num_nodes = image_size**2

weightMask, diagMask, edgeMask, cornerMask = generateFixedWeightMask_PredPrey(
    image_size)

centerMask = ~(edgeMask + cornerMask)

dtype = torch.FloatTensor

testDict = generateSamples(image_size, 2, 10)

for i in range(3):

    modelBlock_State = torch.load(model_path + model_name[i],
                                  map_location=torch.device('cpu'))
    modelBlock = loadStateDict(modelBlock_State)

    layers = layers_list[i]