def _training_DNN(self): trX, trY, self.missing_filename_list, = read_features(self.test_number, self.n_input_f, self.n_output_f) trX = trX[:,1:self.n_input_f] trY = trY[:,1:self.n_output_f] print trX.shape print trY.shape print self.nloop, self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f X = T.fmatrix() Y = T.fmatrix() py_x = self._model(X, self.params, self.bias) y_x = py_x cost = T.mean(T.sqr(py_x - Y)) updates = self._sgd(cost, self.params, self.bias) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) self.predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) for i in range(self.nloop, self.nloop + 0 ): print i #logging.debug('loop' + str(i)) error_total = 0 arr_X_Y = zip(range(0, len(trX), 128), range(128, len(trX), 128)) for start, end in arr_X_Y: cost = train(trX[start:end], trY[start:end]) error_total += cost #print cost last_element = arr_X_Y[len(arr_X_Y)-1][0] if last_element < len(trX): cost = train(trX[last_element: len(trX)], trY[last_element:len(trY)]) error_total += cost print error_total / len(trX) save_weight_info( self.filename, i, self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f, self.params, error_total, self.bias) self.id_file = 1 - self.id_file self.filename = self.weight_folder + 'id_' + str(self.id_file) + ".txt"
def _training_DNN(self): trX, trY, self.missing_filename_list, self.test_number = read_features() load_params = False id_file = 0 weight_folder = '../weight_DNN/SQR/' + self.hidden_layer + self.artic + 'test_' + str(self.test_number) + '/' if not os.path.exists(weight_folder): os.makedirs(weight_folder) filename = weight_folder + 'Phonemic_DNN_SGD_id_' + str(id_file) + ".txt" if load_params: self.nloop,self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f, params = load_weight_info(filename) else: self.nloop = 0 self.n_hidden_layer = 5 self.n_input_f = 109 self.n_hidden_f = 512 self.n_output_f = 37 params = load_initial_info(self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f) trX = trX[:,1:self.n_input_f] trY = trY[:,1:self.n_output_f] print trX.shape print trY.shape print self.nloop, self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f X = T.fmatrix() Y = T.fmatrix() py_x = self._model(X, params) y_x = py_x #cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) cost = T.mean(T.sqr(py_x - Y)) #params = [w_h, w_h1, w_h2, w_h3, w_o] updates = self._sgd(cost, params) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) self.predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) #LOG_FILENAME = 'DNN.log' #logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG) for i in range(self.nloop, self.nloop + 1000): print i #logging.debug('loop' + str(i)) error_total = 0 arr_X_Y = zip(range(0, len(trX), 128), range(128, len(trX), 128)) for start, end in arr_X_Y: cost = train(trX[start:end], trY[start:end]) error_total += cost #print cost last_element = arr_X_Y[len(arr_X_Y)-1][0] if last_element < len(trX): cost = train(trX[last_element: len(trX)], trY[last_element:len(trY)]) error_total += cost print error_total / len(trX) save_weight_info( filename, i, self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f, params, error_total) id_file = 1 - id_file filename = weight_folder + 'Phonemic_DNN_SGD_id_' + str(id_file) + ".txt"
def _training_DNN(self): trX, trY, self.missing_filename_list, = read_features(self.test_number, self.n_input_f, self.n_output_f) trX = trX[:, 1 : self.n_input_f] trY = trY[:, 1 : self.n_output_f] print trX.shape print trY.shape print self.nloop, self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f X = T.fmatrix() Y = T.fmatrix() py_x = self._model(X, self.params) y_x = py_x # cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) cost = T.mean(T.sqr(py_x - Y)) # params = [w_h, w_h1, w_h2, w_h3, w_o] updates = self._sgd(cost, self.params) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) self.predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) # LOG_FILENAME = 'DNN.log' # logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG) for i in range(self.nloop, self.nloop + 500): print i # logging.debug('loop' + str(i)) error_total = 0 arr_X_Y = zip(range(0, len(trX), 128), range(128, len(trX), 128)) for start, end in arr_X_Y: cost = train(trX[start:end], trY[start:end]) error_total += cost # print cost last_element = arr_X_Y[len(arr_X_Y) - 1][0] if last_element < len(trX): cost = train(trX[last_element : len(trX)], trY[last_element : len(trY)]) error_total += cost print error_total / len(trX) save_weight_info( self.filename, i, self.n_hidden_layer, self.n_input_f, self.n_hidden_f, self.n_output_f, self.params, error_total, ) self.id_file = 1 - self.id_file self.filename = self.weight_folder + "Phonemic_DNN_SGD_id_" + str(self.id_file) + ".txt"
def deep_neural_network(): trX, trY = read_features() X = T.fmatrix() Y = T.fmatrix() load_params = False hidden_layer = '6_layers/' # = n_hidden layer below artic = 'artic/' measure = 'SQR/' id_file = 0 weight_folder = '../weight_DNN/' + hidden_layer + measure + artic if not os.path.exists(weight_folder): os.makedirs(weight_folder) filename = weight_folder + 'Phonemic_DNN_SGD_id_' + str(id_file) + ".txt" if load_params: nloop,n_hidden_layer, n_input_f, n_hidden_f, n_output_f, params, bias = load_weight_info(filename) else: print "load Initial" nloop = 0 n_hidden_layer = 1 n_input_f = 20 n_hidden_f = 100 n_output_f = 15 params, bias = load_initial_info(n_hidden_layer, n_input_f, n_hidden_f, n_output_f) trX = trX[:,1:n_input_f] trY = trY[:,1:n_output_f] #trX = trX[1:200,1:2] #trY = trY[1:200:,1:2] print trX.shape print trY.shape print nloop,n_hidden_layer, n_input_f, n_hidden_f, n_output_f #print params print "_-----------" #print bias py_x = model(X, params, bias) y_x = py_x #cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) cost = T.mean(T.sqr(py_x - Y)) updates = sgd(cost, params, bias) # for u in xrange(len(params)): # print params[u] # c = params[u].get_value() # print c.shape # for u in xrange(len(bias)): # print bias[u] # c = bias[u].get_value() # print c.shape #exit() train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) LOG_FILENAME = 'DNN.log' logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG) for i in range(nloop, nloop + 10): print "i ", i #logging.debug('loop' + str(i)) error_total = 0 arr_X_Y = zip(range(0, len(trX), 128), range(128, len(trX), 128)) #arr_X_Y = zip(range(0, len(trX), 1), range(1, len(trX), 1)) for start, end in arr_X_Y: cost = train(trX[start:end], trY[start:end]) error_total += cost #print cost print error_total # last_element = arr_X_Y[len(arr_X_Y)-1][0] # if last_element < len(trX): # cost = train(trX[last_element: len(trX)], trY[last_element:len(trY)]) # error_total += cost # print error_total / len(trX) save_weight_info( filename, i, n_hidden_layer, n_input_f, n_hidden_f, n_output_f, params, error_total, bias) id_file = 1 - id_file filename = weight_folder + 'Phonemic_DNN_SGD_id_' + str(id_file) + ".txt" #exit() #plt.plot(trX,trY,'.') #plt.plot(trX,trX * w.get_value() + b.get_value(), "red") exit() feature_out_dir = '/home/danglab/Phong/norm/output_norm/' test_dir = '/home/danglab/Phong/TestData/Features_Norm/minus/6dB/' dnn_predict_dir = '/home/danglab/DNN_Predict/DNN_Bias/'+ measure + artic + 'minus/6dB/' if not os.path.exists(dnn_predict_dir): os.makedirs(dnn_predict_dir) listtest = sorted(os.listdir(test_dir)) cnt = 0 for afile in listtest: #print afile #usctimit_ema_f1_001_005_100ms_noise_in.txt test_arr, factors = read_file_test(test_dir + afile, n_input_f, "factors") #read a missing_feature find_ = [m.start() for m in re.finditer('_', afile)] file_mat = (afile.replace(afile[find_[4]:find_[6]],'')).replace('in.','out.') #usctimit_ema_f1_001_005_out.txt #test_res_arr = read_file_test(feature_out_dir + file_mat, n_output_f) #read an original output feature energy = test_arr[:,0] #ko cho energy vao DNN test_arr = test_arr[:,1:n_input_f] print factors write_predict_2_file(dnn_predict_dir + afile.replace(afile[find_[5]:find_[6]],'').replace("_out",''), energy, predict(test_arr), factors) # write result to file
def deep_neural_network(): trX, trY = read_features() trX, mask, max_x = abs_normal_matrix(trX) for u in xrange(trX.shape[0]): trY[u] = np.concatenate((trX[u][0:13], trX[u][37:37+24])) #print trX.shape #print trY.shape X = T.fmatrix() Y = T.fmatrix() load_params = True hidden_layer = '6_layers/' # = n_hidden layer below artic = 'artic/' id_file = 0 weight_folder = '../weight_DNN/' + hidden_layer + artic if not os.path.exists(weight_folder): os.makedirs(weight_folder) filename = weight_folder + 'Phonemic_DNN_SGD_id_' + str(id_file) + ".txt" if load_params: nloop,n_hidden_layer, n_input_f, n_hidden_f, n_output_f, params = load_weight_info(filename) else: nloop = 0 n_hidden_layer = 6 n_input_f = 109 n_hidden_f = 512 n_output_f = 37 params = load_initial_info(n_hidden_layer, n_input_f, n_hidden_f, n_output_f) trX = trX[:,1:n_input_f] print trX.max(), trX.min() trY = trY[:,1:n_output_f] print trY.max(), trY.min() #print trX.shape #print trY.shape print "trX" #print trX print "trY" #print trY print nloop,n_hidden_layer, n_input_f, n_hidden_f, n_output_f py_x = model(X, params) y_x = py_x #cost = T.mean(T.nnet.categorical_crossentropy(py_x, Y)) cost = T.mean(T.sqr(py_x - Y)) #params = [w_h, w_h1, w_h2, w_h3, w_o] updates = sgd(cost, params) train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True) predict = theano.function(inputs=[X], outputs=y_x, allow_input_downcast=True) LOG_FILENAME = 'DNN.log' logging.basicConfig(filename=LOG_FILENAME,level=logging.DEBUG) for i in range(nloop, nloop + 1): print i #logging.debug('loop' + str(i)) error_total = 0 arr_X_Y = zip(range(0, len(trX), 128), range(128, len(trX), 128)) for start, end in arr_X_Y: cost = train(trX[start:end], trY[start:end]) error_total += cost #print cost last_element = arr_X_Y[len(arr_X_Y)-1][0] #logging.warning(str(params[n_hidden_layer - 1].get_value())) if last_element < len(trX): cost = train(trX[last_element: len(trX)], trY[last_element:len(trY)]) error_total += cost print error_total #/ len(trX) save_weight_info( filename, i, n_hidden_layer, n_input_f, n_hidden_f, n_output_f, params, error_total) id_file = 1 - id_file filename = weight_folder + 'Phonemic_DNN_SGD_id_' + str(id_file) + ".txt" #feature_out_dir = '/home/danglab/Phong/norm/output_norm/' test_dir = '/home/danglab/Phong/TestData/Features/minus/6dB/' dnn_predict_dir = '/home/danglab/DNN_Predict/normal_all/' + artic + 'minus/6dB/' if not os.path.exists(dnn_predict_dir): os.makedirs(dnn_predict_dir) listtest = sorted(os.listdir(test_dir)) cnt = 0 for afile in listtest: #print afile #usctimit_ema_f1_001_005_100ms_noise_in.txt test_arr = read_file_test(test_dir + afile, n_input_f, "factors") #read a missing_feature find_ = [m.start() for m in re.finditer('_', afile)] file_mat = (afile.replace(afile[find_[4]:find_[6]],'')).replace('in.','out.') #usctimit_ema_f1_001_005_out.txt #test_res_arr = read_file_test(feature_out_dir + file_mat, n_output_f) #read an original output feature test_arr, mask, max_arr = abs_normal_matrix(test_arr) #print test_arr energy = test_arr[:,0] #ko cho energy vao DNN test_arr = test_arr[:,1:n_input_f] #print "max_arr", max_arr write_predict_2_file(dnn_predict_dir + afile.replace(afile[find_[5]:find_[6]],'').replace("_out",''), energy, predict(test_arr), mask, max_arr) # write result to file