Esempio n. 1
0
    def init(self, **kwargs):
        """

        Parameters
        ----------
        **kwargs :
            

        Returns
        -------

        """

        super().init(**kwargs)

        # load the json topology as an mdtraj one
        mdtraj_top = json_to_mdtraj_topology(self.json_main_rep_top)

        # make a traj for the initial state to use as a topology for
        # visualizing the walkers
        init_traj = mdj.Trajectory(
            [self.init_main_rep_positions],
            unitcell_lengths=[self.init_unitcell_lengths],
            unitcell_angles=[self.init_unitcell_angles],
            topology=mdtraj_top)

        # write out the init traj as a pdb
        logging.info("Writing initial state to {}".format(
            self.init_state_path))
        init_traj.save_pdb(self.init_state_path)
def binding_site_idxs(json_topology, coords, box_vectors, cutoff):

    # convert quantities to numbers in nanometers
    cutoff = cutoff.value_in_unit(unit.nanometer)
    coords = coords.value_in_unit(unit.nanometer)

    box_lengths, box_angles = box_vectors_to_lengths_angles(
        box_vectors.value_in_unit(unit.nanometer))

    # selecting ligand and protein binding site atom indices for
    # resampler and boundary conditions
    lig_idxs = ligand_idxs(json_topology)
    prot_idxs = protein_idxs(json_topology)

    # make a trajectory to compute the neighbors from
    traj = mdj.Trajectory(np.array([coords]),
                          unitcell_lengths=[box_lengths],
                          unitcell_angles=[box_angles],
                          topology=json_to_mdtraj_topology(json_topology))

    # selects protein atoms which have less than 8 A from ligand
    # atoms in the crystal structure
    neighbors_idxs = mdj.compute_neighbors(traj, cutoff, lig_idxs)

    # selects protein atoms from neighbors list
    binding_selection_idxs = np.intersect1d(neighbors_idxs, prot_idxs)

    return binding_selection_idxs
Esempio n. 3
0
    def _calc_min_distance(self, walker):
        """Min-min distance for a walker.

        Parameters
        ----------
        walker : object implementing the Walker interface

        Returns
        -------
        min_distance : float

        """

        cell_lengths, cell_angles = box_vectors_to_lengths_angles(
            walker.state['box_vectors'])

        # convert the json topology to an mdtraj one
        mdj_top = json_to_mdtraj_topology(self._topology)

        # make a traj out of it so we can calculate distances through
        # the periodic boundary conditions
        walker_traj = mdj.Trajectory(walker.state['positions'],
                                     topology=mdj_top,
                                     unitcell_lengths=cell_lengths,
                                     unitcell_angles=cell_angles)

        # calculate the distances through periodic boundary conditions
        # and get hte minimum distance
        min_distance = np.min(
            mdj.compute_distances(
                walker_traj, it.product(self.ligand_idxs, self.receptor_idxs)))
        return min_distance
Esempio n. 4
0
    def init(self, **kwargs):
        """

        Parameters
        ----------
        **kwargs :
            

        Returns
        -------

        """

        super().init(**kwargs)

        if self.init_image is not None:

            image_mdj_topology = json_to_mdtraj_topology(
                self.json_main_rep_top)

            # initialize the initial image into the image traj
            init_image_traj = mdj.Trajectory([self.init_image],
                                             time=self.times,
                                             topology=image_mdj_topology)

            # save this as a PDB for a topology to view in VMD etc. to go
            # along with the trajectory we will make
            logging.info("Writing initial image to {}".format(
                self.init_state_path))
            init_image_traj.save_pdb(self.init_state_path)

            self._top_pdb_written = True
Esempio n. 5
0
    def report(self, cycle_idx=None, new_walkers=None, **kwargs):
        """Report the current cycle's walker states as 3D molecular
        structures.

        Parameters
        ----------
        cycle_idx : int

        new_walkers : list of Walker objects

        """

        # load the json topology as an mdtraj one
        mdtraj_top = json_to_mdtraj_topology(self.json_main_rep_top)

        # slice off the main_rep indices because that is all we want
        # to write for these
        main_rep_positions = np.array([
            walker.state['positions'][self.main_rep_idxs]
            for walker in new_walkers
        ])

        # convert the box vectors
        unitcell_lengths, unitcell_angles = traj_box_vectors_to_lengths_angles(
            np.array([walker.state['box_vectors'] for walker in new_walkers]))

        # make a trajectory from these walkers
        traj = mdj.Trajectory(main_rep_positions,
                              unitcell_lengths=unitcell_lengths,
                              unitcell_angles=unitcell_angles,
                              topology=mdtraj_top)

        # write to the file for this trajectory
        traj.save_dcd(self.walker_path)
Esempio n. 6
0
    def report(self, cycle_idx=None, resampler_data=None, **kwargs):

        # load the json topology as an mdtraj one
        image_mdj_topology = json_to_mdtraj_topology(self.json_main_rep_top)

        # collect the new images defined
        new_images = []
        for resampler_rec in resampler_data:
            image = resampler_rec['image']
            new_images.append(image)

        times = np.array([cycle_idx + 1 for _ in range(len(new_images))])

        # combine the new image positions and times with the old
        self.image_traj_positions.extend(new_images)
        self.times.extend(times)

        # only save if we have an image yet
        if len(self.image_traj_positions) > 0:

            # make a trajectory of the new images, using the cycle_idx as the time
            new_image_traj = mdj.Trajectory(self.image_traj_positions,
                                            time=self.times,
                                            topology=image_mdj_topology)

            # if we haven't already written a topology PDB write it now
            if not self._top_pdb_written:
                new_image_traj[0].save_pdb(self.init_state_path)
                self._top_pdb_written = True

            # then the images to the trajectory file
            new_image_traj.save_dcd(self.image_path)
Esempio n. 7
0
def binding_site_idxs(json_topology,
                      ligand_idxs,
                      receptor_idxs,
                      coords,
                      box_vectors,
                      cutoff,
                      periodic=True):
    """

    Parameters
    ----------

    json_topology : str

    ligand_idxs : arraylike (1,)

    receptor_idxs : arraylike (1,)

    coords : simtk.Quantity

    box_vectors : simtk.Quantity

    cutoff : float

    Returns
    -------

    binding_site_idxs : arraylike (1,)

    """

    # convert quantities to numbers in nanometers
    cutoff = cutoff.value_in_unit(unit.nanometer)
    coords = coords.value_in_unit(unit.nanometer)

    box_lengths, box_angles = box_vectors_to_lengths_angles(
        box_vectors.value_in_unit(unit.nanometer))

    # make a trajectory to compute the neighbors from
    traj = mdj.Trajectory(np.array([coords]),
                          unitcell_lengths=[box_lengths],
                          unitcell_angles=[box_angles],
                          topology=json_to_mdtraj_topology(json_topology))

    neighbors_idxs = mdj.compute_neighbors(traj,
                                           cutoff,
                                           ligand_idxs,
                                           periodic=periodic)[0]

    # selects protein atoms from neighbors list
    binding_selection_idxs = np.intersect1d(neighbors_idxs, receptor_idxs)

    return binding_selection_idxs
Esempio n. 8
0
    def init(self, **kwargs):
        """Initialize the reporter at simulation time.

        This will generate the initial state PDB file.

        """

        super().init(**kwargs)

        # load the json topology as an mdtraj one
        mdtraj_top = json_to_mdtraj_topology(self.json_main_rep_top)

        # make a traj for the initial state to use as a topology for
        # visualizing the walkers
        init_traj = mdj.Trajectory(
            [self.init_main_rep_positions],
            unitcell_lengths=[self.init_unitcell_lengths],
            unitcell_angles=[self.init_unitcell_angles],
            topology=mdtraj_top)

        # write out the init traj as a pdb
        logging.info("Writing initial state to {}".format(
            self.init_state_path))
        init_traj.save_pdb(self.init_state_path)
Esempio n. 9
0
def binding_site_idxs(json_topology,
                      ligand_idxs,
                      receptor_idxs,
                      coords,
                      box_vectors,
                      cutoff,
                      periodic=True):
    """Parameters
    ----------

    json_topology : str

    ligand_idxs : arraylike (1,)

    receptor_idxs : arraylike (1,)

    coords : N x 3 arraylike of float or simtk.Quantity
        If not a quantity will implicitly be treated as being in
        nanometers.

    box_vectors : simtk.Quantity
        If not a quantity will implicitly be treated as being in
        nanometers.

    cutoff : float or simtk.Quantity
        If not a quantity will implicitly be treated as being in
        nanometers.

    Returns
    -------

    binding_site_idxs : arraylike (1,)

    """

    # if they are simtk.units convert quantities to numbers in
    # nanometers
    if unit.is_quantity(cutoff):
        cutoff = cutoff.value_in_unit(unit.nanometer)

    if unit.is_quantity(coords):
        coords = coords.value_in_unit(unit.nanometer)

    if unit.is_quantity(box_vectors):
        box_vectors = box_vectors.value_in_unit(unit.nanometer)

    box_lengths, box_angles = box_vectors_to_lengths_angles(box_vectors)

    # make a trajectory to compute the neighbors from
    traj = mdj.Trajectory(np.array([coords]),
                          unitcell_lengths=[box_lengths],
                          unitcell_angles=[box_angles],
                          topology=json_to_mdtraj_topology(json_topology))

    neighbors_idxs = mdj.compute_neighbors(traj,
                                           cutoff,
                                           ligand_idxs,
                                           periodic=periodic)[0]

    # selects protein atoms from neighbors list
    binding_selection_idxs = np.intersect1d(neighbors_idxs, receptor_idxs)

    return binding_selection_idxs
Esempio n. 10
0
    def __init__(self, initial_state=None,
                 cutoff_distance=1.0,
                 topology=None,
                 ligand_idxs=None,
                 receptor_idxs=None,
                 periodic=True,
                 **kwargs):
        """Constructor for UnbindingBC class.

        All the key-word arguments are necessary.

        The 'initial_state' should be the initial state of your
        simulation for proper non-equilibrium simulations.

        Arguments
        ---------
        initial_state : object implementing State interface
            The state walkers will take on after unbinding.

        cutoff_distance : float
            The distance that specifies the boundary condition. When
            the min-min ligand-receptor distance is less than this it
            will be warped.

        topology : str
            A JSON string of topology.

        ligand_idxs : list of int
           Indices of the atoms in the topology that correspond to the ligands.

        receptor_idxs : list of int
           Indices of the atoms in the topology that correspond to the
           receptor for the ligand.

        Raises
        ------
        AssertionError
            If any of the following are not provided: initial_state, topology,
            ligand_idxs, receptor_idxs

        AssertionError
            If the cutoff distance is not a float.

        Warnings
        --------
        The 'initial_state' should be the initial state of your
        simulation for proper non-equilibrium simulations.

        Notes
        -----

        The topology argument is necessary due to an implementation
        detail that uses mdtraj and may not be required in the future.

        """

        # since the super class can handle multiple initial states we
        # wrap the single initial state to a list.
        super().__init__(initial_states=[initial_state],
                         ligand_idxs=ligand_idxs,
                         receptor_idxs=receptor_idxs,
                         **kwargs)

        # test input
        assert topology is not None, "Must give a reference topology"
        assert type(cutoff_distance) is float

        self._cutoff_distance = cutoff_distance
        self._topology = topology

        # convert the json topology to an mdtraj one
        self._mdj_top = json_to_mdtraj_topology(self._topology)

        # whether or not to use the periodic box vectors in the
        # distance calculation
        self._periodic = periodic
def run_sim(init_state_path, json_top_path, forcefield_paths, n_cycles,
            n_steps, n_workers, **kwargs):

    #### Wepy Orchestrator

    # load the wepy.OpenMMState
    with open(init_state_path, 'rb') as rf:
        init_state = pickle.load(rf)

    ### Apparatus

    # Runner components

    # load the JSON for the topology
    with open(json_top_path) as rf:
        json_top_str = rf.read()

    # load it with mdtraj and then convert to openmm
    mdj_top = json_to_mdtraj_topology(json_top_str)
    omm_topology = mdj_top.to_openmm()

    # we need to use the box vectors for setting the simulation up,
    # paying mind to the units
    box_vectors = init_state['box_vectors'] * init_state.box_vectors_unit

    # set the box to the last box size from equilibration
    omm_topology.setPeriodicBoxVectors(box_vectors)

    # force field parameters
    force_field = omma.ForceField(*forcefield_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    runner_system = force_field.createSystem(omm_topology,
                                             nonbondedMethod=NONBONDED_METHOD,
                                             nonbondedCutoff=NONBONDED_CUTOFF,
                                             constraints=MD_CONSTRAINTS,
                                             rigidWater=RIGID_WATER,
                                             removeCMMotion=REMOVE_CM_MOTION,
                                             hydrogenMass=HYDROGEN_MASS)

    # barostat to keep pressure constant
    runner_barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE,
                                             VOLUME_MOVE_FREQ)
    # add it to the system
    runner_system.addForce(runner_barostat)

    # set up for a short simulation to runner and prepare
    # instantiate an integrator
    runner_integrator = omm.LangevinIntegrator(TEMPERATURE,
                                               FRICTION_COEFFICIENT, STEP_TIME)

    ## Runner
    runner = OpenMMRunner(runner_system,
                          omm_topology,
                          runner_integrator,
                          platform=PLATFORM)

    ## Resampler

    # Distance Metric

    # TODO set distance metric
    distance_metric = None

    # TODO set resampler
    resampler = None

    ## Boundary Conditions

    # TODO optional: set the boundary conditions
    bc = None

    # apparatus = WepySimApparatus(runner, resampler=resampler,
    #                              boundary_conditions=bc)

    print("created apparatus")

    ## CONFIGURATION

    # the idxs of the main representation to save in the output files,
    # it is just the protein and the ligand

    # TODO optional: set the main representation atom indices
    main_rep_idxs = None

    # REPORTERS
    # list of reporter classes and partial kwargs for using in the
    # orchestrator

    hdf5_reporter_kwargs = {
        'main_rep_idxs': main_rep_idxs,
        'topology': json_top_str,
        'resampler': resampler,
        'boundary_conditions': bc,
        # general parameters
        'save_fields': SAVE_FIELDS,
        'units': dict(UNITS),
        'sparse_fields': dict(SPARSE_FIELDS),
        'all_atoms_rep_freq': ALL_ATOMS_SAVE_FREQ
    }

    # get all the reporters together. Order is important since they
    # will get paired with the kwargs
    reporter_classes = [
        WepyHDF5Reporter,
    ]

    # collate the kwargs in the same order
    reporter_kwargs = [
        hdf5_reporter_kwargs,
    ]

    # make the configuration with all these reporters and the default number of workers
    configuration = Configuration(n_workers=DEFAULT_N_WORKERS,
                                  reporter_classes=reporter_classes,
                                  reporter_partial_kwargs=reporter_kwargs,
                                  config_name="no-orch")

    # then instantiate them
    reporters = configuration._gen_reporters()

    print("created configuration")

    ### Initial Walkers
    init_walkers = [
        Walker(deepcopy(init_state), INIT_WEIGHT) for _ in range(N_WALKERS)
    ]

    print("created init walkers")

    ### Orchestrator
    # orchestrator = Orchestrator(apparatus,
    #                             default_init_walkers=init_walkers,
    #                             default_configuration=configuration)

    ### Work Mapper
    if PLATFORM in ('OpenCL', 'CUDA'):
        # we use a mapper that uses GPUs
        work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                                   num_workers=n_workers)
    if PLATFORM in ('Reference', 'CPU'):
        # we just use the standard mapper
        work_mapper = Mapper

    ### Simulation Manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=bc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### Run the simulation
    steps = [n_steps for _ in range(n_cycles)]
    sim_manager.run_simulation(n_cycles, steps)
Esempio n. 12
0
def run_sim(init_state_path,
            json_top_path,
            forcefield_paths,
            n_cycles,
            n_steps,
            platform,
            n_workers,
            lig_ff=None,
            **kwargs):

    # add in the ligand force fields
    assert lig_ff is not None, "must give ligand forcefield"

    forcefield_paths.append(lig_ff)

    #### Wepy Orchestrator

    # load the wepy.OpenMMState
    with open(init_state_path, 'rb') as rf:
        init_state = pickle.load(rf)

    ### Apparatus

    # Runner components

    # load the JSON for the topology
    with open(json_top_path) as rf:
        json_top_str = rf.read()

    # load it with mdtraj and then convert to openmm
    mdj_top = json_to_mdtraj_topology(json_top_str)
    omm_topology = mdj_top.to_openmm()

    # we need to use the box vectors for setting the simulation up,
    # paying mind to the units
    box_vectors = init_state['box_vectors'] * init_state.box_vectors_unit
    positions = init_state['positions'] * init_state.positions_unit

    # set the box to the last box size from equilibration
    omm_topology.setPeriodicBoxVectors(box_vectors)

    # force field parameters
    force_field = omma.ForceField(*forcefield_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    runner_system = force_field.createSystem(omm_topology,
                                             nonbondedMethod=NONBONDED_METHOD,
                                             nonbondedCutoff=NONBONDED_CUTOFF,
                                             constraints=MD_CONSTRAINTS,
                                             rigidWater=RIGID_WATER,
                                             removeCMMotion=REMOVE_CM_MOTION,
                                             hydrogenMass=HYDROGEN_MASS)

    # barostat to keep pressure constant
    runner_barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE,
                                             VOLUME_MOVE_FREQ)
    # add it to the system
    runner_system.addForce(runner_barostat)

    # set up for a short simulation to runner and prepare
    # instantiate an integrator
    runner_integrator = omm.LangevinIntegrator(TEMPERATURE,
                                               FRICTION_COEFFICIENT, STEP_TIME)

    ## Runner
    runner = OpenMMRunner(runner_system,
                          omm_topology,
                          runner_integrator,
                          platform=platform)

    ## Resampler

    # Distance Metric

    lig_idxs = ligand_idxs(json_top_str)
    prot_idxs = protein_idxs(json_top_str)
    bs_idxs = binding_site_idxs(json_top_str, positions, box_vectors, CUTOFF)

    # set distance metric
    distance_metric = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    # set resampler
    resampler = WExploreResampler(distance=distance_metric,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Boundary Conditions

    # optional: set the boundary conditions
    bc = None

    ## CONFIGURATION

    # the idxs of the main representation to save in the output files,
    # it is just the protein and the ligand

    # optional: set the main representation atom indices, set to None
    # to save all the atoms in the 'positions' field
    main_rep_idxs = np.concatenate((lig_idxs, prot_idxs))

    # REPORTERS
    # list of reporter classes and partial kwargs for using in the
    # orchestrator

    hdf5_reporter_kwargs = {
        'main_rep_idxs': main_rep_idxs,
        'topology': json_top_str,
        'resampler': resampler,
        'boundary_conditions': bc,
        # general parameters
        'save_fields': SAVE_FIELDS,
        'units': dict(UNITS),
        'sparse_fields': dict(SPARSE_FIELDS),
        'all_atoms_rep_freq': ALL_ATOMS_SAVE_FREQ
    }

    # get all the reporters together. Order is important since they
    # will get paired with the kwargs
    reporter_classes = [
        WepyHDF5Reporter,
    ]

    # collate the kwargs in the same order
    reporter_kwargs = [
        hdf5_reporter_kwargs,
    ]

    # make the configuration with all these reporters and the default
    # number of workers. Don't be thrown off by this. You don't need
    # this. It is just a convenient way to dynamically name the
    # outputs of the reporters and parametrize the workers and worker
    # mappers. This is mainly for use in the Orchestrator framework
    # but it is useful here just for batch naming everything.
    configuration = Configuration(n_workers=DEFAULT_N_WORKERS,
                                  reporter_classes=reporter_classes,
                                  reporter_partial_kwargs=reporter_kwargs,
                                  config_name="no-orch",
                                  mode='w')

    # then instantiate the reporters from the configuration. THis
    # localizes the file paths to outputs and applies the key-word
    # arguments specified above.
    reporters = configuration._gen_reporters()

    print("created configuration")

    ### Initial Walkers
    init_walkers = [
        Walker(deepcopy(init_state), INIT_WEIGHT) for _ in range(N_WALKERS)
    ]

    print("created init walkers")

    ### Work Mapper
    if platform in ('OpenCL', 'CUDA'):
        # we use a mapper that uses GPUs
        work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                                   num_workers=n_workers)

    elif platform in ('CPU', ):
        # for the CPU we can choose how many threads to use per walker.
        worker_attributes = {'num_threads': N_CPU_THREADS}
        work_mapper = WorkerMapper(worker_type=OpenMMCPUWorker,
                                   worker_attributes=worker_attributes,
                                   num_workers=n_workers)

    elif platform in ('Reference', ):
        # we just use the standard mapper for in serial
        work_mapper = Mapper

    ### Simulation Manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=bc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### Run the simulation
    steps = [n_steps for _ in range(n_cycles)]
    sim_manager.run_simulation(n_cycles, steps)