Esempio n. 1
0
class WPDist(WESTParallelTool):
    prog = 'w_pdist'
    description = '''\
Calculate time-resolved, multi-dimensional probability distributions of WE 
datasets.


-----------------------------------------------------------------------------
Source data
-----------------------------------------------------------------------------

Source data is provided either by a user-specified function
(--construct-dataset) or a list of "data set specifications" (--dsspecs).
If neither is provided, the progress coordinate dataset ''pcoord'' is used.

To use a custom function to extract or calculate data whose probability
distribution will be calculated, specify the function in standard Python
MODULE.FUNCTION syntax as the argument to --construct-dataset. This function
will be called as function(n_iter,iter_group), where n_iter is the iteration
whose data are being considered and iter_group is the corresponding group
in the main WEST HDF5 file (west.h5). The function must return data which can
be indexed as [segment][timepoint][dimension].

To use a list of data set specifications, specify --dsspecs and then list the
desired datasets one-by-one (space-separated in most shells). These data set
specifications are formatted as NAME[,file=FILENAME,slice=SLICE], which will
use the dataset called NAME in the HDF5 file FILENAME (defaulting to the main
WEST HDF5 file west.h5), and slice it with the Python slice expression SLICE
(as in [0:2] to select the first two elements of the first axis of the
dataset). The ``slice`` option is most useful for selecting one column (or
more) from a multi-column dataset, such as arises when using a progress
coordinate of multiple dimensions.


-----------------------------------------------------------------------------
Histogram binning
-----------------------------------------------------------------------------

By default, histograms are constructed with 100 bins in each dimension. This
can be overridden by specifying -b/--bins, which accepts a number of different
kinds of arguments:

  a single integer N
    N uniformly spaced bins will be used in each dimension.
    
  a sequence of integers N1,N2,... (comma-separated)
    N1 uniformly spaced bins will be used for the first dimension, N2 for the
    second, and so on.
    
  a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]
    The bin boundaries B11, B12, B13, ... will be used for the first dimension,
    B21, B22, B23, ... for the second dimension, and so on. These bin
    boundaries need not be uniformly spaced. These expressions will be
    evaluated with Python's ``eval`` construct, with ``numpy`` available for
    use [e.g. to specify bins using numpy.arange()].

The first two forms (integer, list of integers) will trigger a scan of all
data in each dimension in order to determine the minimum and maximum values,
which may be very expensive for large datasets. This can be avoided by
explicitly providing bin boundaries using the list-of-lists form.

Note that these bins are *NOT* at all related to the bins used to drive WE
sampling.


-----------------------------------------------------------------------------
Output format
-----------------------------------------------------------------------------

The output file produced (specified by -o/--output, defaulting to "pdist.h5")
may be fed to plothist to generate plots (or appropriately processed text or
HDF5 files) from this data. In short, the following datasets are created:

  ``histograms``
    Normalized histograms. The first axis corresponds to iteration, and
    remaining axes correspond to dimensions of the input dataset.
    
  ``/binbounds_0``
    Vector of bin boundaries for the first (index 0) dimension. Additional
    datasets similarly named (/binbounds_1, /binbounds_2, ...) are created
    for additional dimensions.
    
  ``/midpoints_0``
    Vector of bin midpoints for the first (index 0) dimension. Additional
    datasets similarly named are created for additional dimensions.
    
  ``n_iter``
    Vector of iteration numbers corresponding to the stored histograms (i.e.
    the first axis of the ``histograms`` dataset).


-----------------------------------------------------------------------------
Subsequent processing
-----------------------------------------------------------------------------

The output generated by this program (-o/--output, default "pdist.h5") may be
plotted by the ``plothist`` program. See ``plothist --help`` for more
information.

    
-----------------------------------------------------------------------------
Parallelization
-----------------------------------------------------------------------------

This tool supports parallelized binning, including reading of input data.
Parallel processing is the default. For simple cases (reading pre-computed
input data, modest numbers of segments), serial processing (--serial) may be
more efficient.


-----------------------------------------------------------------------------
Command-line options
-----------------------------------------------------------------------------
    
'''

    def __init__(self):
        super(WPDist, self).__init__()

        # Parallel processing by default (this is not actually necessary, but it is
        # informative!)
        self.wm_env.default_work_manager = self.wm_env.default_parallel_work_manager

        # These are used throughout
        self.progress = ProgressIndicatorComponent()
        self.data_reader = WESTDataReader()
        self.input_dssynth = WESTDSSynthesizer(default_dsname='pcoord')
        self.iter_range = IterRangeSelection(self.data_reader)
        self.iter_range.include_args['iter_step'] = False
        self.binspec = None
        self.output_filename = None
        self.output_file = None

        self.dsspec = None
        self.wt_dsspec = None  # dsspec for weights

        # These are used during histogram generation only
        self.iter_start = None
        self.iter_stop = None
        self.ndim = None
        self.ntimepoints = None
        self.dset_dtype = None
        self.binbounds = None  # bin boundaries for each dimension
        self.midpoints = None  # bin midpoints for each dimension
        self.data_range = None  # data range for each dimension, as the pairs (min,max)
        self.ignore_out_of_range = False
        self.compress_output = False

    def add_args(self, parser):
        self.data_reader.add_args(parser)

        self.iter_range.add_args(parser)

        parser.add_argument(
            '-b',
            '--bins',
            dest='bins',
            metavar='BINEXPR',
            default='100',
            help=
            '''Use BINEXPR for bins. This may be an integer, which will be used for each
                            dimension of the progress coordinate; a list of integers (formatted as [n1,n2,...])
                            which will use n1 bins for the first dimension, n2 for the second dimension, and so on;
                            or a list of lists of boundaries (formatted as [[a1, a2, ...], [b1, b2, ...], ... ]), which
                            will use [a1, a2, ...] as bin boundaries for the first dimension, [b1, b2, ...] as bin boundaries
                            for the second dimension, and so on. (Default: 100 bins in each dimension.)'''
        )

        parser.add_argument(
            '-o',
            '--output',
            dest='output',
            default='pdist.h5',
            help='''Store results in OUTPUT (default: %(default)s).''')
        parser.add_argument(
            '-C',
            '--compress',
            action='store_true',
            help=
            '''Compress histograms. May make storage of higher-dimensional histograms
                            more tractable, at the (possible extreme) expense of increased analysis time.
                            (Default: no compression.)''')

        parser.add_argument(
            '--loose',
            dest='ignore_out_of_range',
            action='store_true',
            help=
            '''Ignore values that do not fall within bins. (Risky, as this can make buggy bin
                            boundaries appear as reasonable data. Only use if you are
                            sure of your bin boundary specification.)''')

        igroup = parser.add_argument_group(
            'input dataset options').add_mutually_exclusive_group(
                required=False)

        igroup.add_argument(
            '--construct-dataset',
            help=
            '''Use the given function (as in module.function) to extract source data.
                            This function will be called once per iteration as function(n_iter, iter_group)
                            to construct data for one iteration. Data returned must be indexable as
                            [seg_id][timepoint][dimension]''')

        igroup.add_argument(
            '--dsspecs',
            nargs='+',
            metavar='DSSPEC',
            help=
            '''Construct probability distribution from one or more DSSPECs.''')

        self.progress.add_args(parser)

    def process_args(self, args):
        self.progress.process_args(args)
        self.data_reader.process_args(args)
        self.input_dssynth.h5filename = self.data_reader.we_h5filename
        self.input_dssynth.process_args(args)
        self.dsspec = self.input_dssynth.dsspec

        # Carrying an open HDF5 file across a fork() seems to corrupt the entire HDF5 library
        # Open the WEST HDF5 file just long enough to process our iteration range, then close
        # and reopen in go() [which executes after the fork]
        with self.data_reader:
            self.iter_range.process_args(args)

        self.wt_dsspec = SingleIterDSSpec(self.data_reader.we_h5filename,
                                          'seg_index',
                                          slice=numpy.index_exp['weight'])

        self.binspec = args.bins
        self.output_filename = args.output
        self.ignore_out_of_range = bool(args.ignore_out_of_range)
        self.compress_output = args.compress or False

    def go(self):
        self.data_reader.open('r')
        pi = self.progress.indicator
        pi.operation = 'Initializing'
        with pi:
            self.output_file = h5py.File(self.output_filename, 'w')
            h5io.stamp_creator_data(self.output_file)

            self.iter_start = self.iter_range.iter_start
            self.iter_stop = self.iter_range.iter_stop

            # Construct bin boundaries
            self.construct_bins(self.parse_binspec(self.binspec))
            for idim, (binbounds, midpoints) in enumerate(
                    zip(self.binbounds, self.midpoints)):
                self.output_file['binbounds_{}'.format(idim)] = binbounds
                self.output_file['midpoints_{}'.format(idim)] = midpoints

            # construct histogram
            self.construct_histogram()

            # Record iteration range
            iter_range = self.iter_range.iter_range()
            self.output_file['n_iter'] = iter_range
            self.iter_range.record_data_iter_range(
                self.output_file['histograms'])

            self.output_file.close()

    @staticmethod
    def parse_binspec(binspec):
        namespace = {'numpy': numpy, 'inf': float('inf')}

        try:
            binspec_compiled = eval(binspec, namespace)
        except Exception as e:
            raise ValueError('invalid bin specification: {!r}'.format(e))
        else:
            if log.isEnabledFor(logging.DEBUG):
                log.debug('bin specs: {!r}'.format(binspec_compiled))
        return binspec_compiled

    def construct_bins(self, bins):
        '''
        Construct bins according to ``bins``, which may be:
        
          1) A scalar integer (for that number of bins in each dimension)
          2) A sequence of integers (specifying number of bins for each dimension)
          3) A sequence of sequences of bin boundaries (specifying boundaries for each dimension)
          
        Sets ``self.binbounds`` to a list of arrays of bin boundaries appropriate for passing to 
        fasthist.histnd, along with ``self.midpoints`` to the midpoints of the bins.
        '''

        if not isiterable(bins):
            self._construct_bins_from_scalar(bins)
        elif not isiterable(bins[0]):
            self._construct_bins_from_int_seq(bins)
        else:
            self._construct_bins_from_bound_seqs(bins)

        if log.isEnabledFor(logging.DEBUG):
            log.debug('binbounds: {!r}'.format(self.binbounds))

    def scan_data_shape(self):
        if self.ndim is None:
            dset = self.dsspec.get_iter_data(self.iter_start)
            self.ntimepoints = dset.shape[1]
            self.ndim = dset.shape[2]
            self.dset_dtype = dset.dtype

    def scan_data_range(self):
        '''Scan input data for range in each dimension. The number of dimensions is determined
        from the shape of the progress coordinate as of self.iter_start.'''

        self.progress.indicator.new_operation('Scanning for data range',
                                              self.iter_stop - self.iter_start)
        self.scan_data_shape()

        dset_dtype = self.dset_dtype
        ndim = self.ndim
        dsspec = self.dsspec

        try:
            minval = numpy.finfo(dset_dtype).min
            maxval = numpy.finfo(dset_dtype).max
        except ValueError:
            minval = numpy.iinfo(dset_dtype).min
            maxval = numpy.iinfo(dset_dtype).max

        data_range = self.data_range = [(maxval, minval)
                                        for _i in range(self.ndim)]

        #futures = []
        #for n_iter in xrange(self.iter_start, self.iter_stop):
        #_remote_min_max(ndim, dset_dtype, n_iter, dsspec)
        #    futures.append(self.work_manager.submit(_remote_min_max, args=(ndim, dset_dtype, n_iter, dsspec)))

        #for future in self.work_manager.as_completed(futures):
        for future in self.work_manager.submit_as_completed(
            ((_remote_min_max, (ndim, dset_dtype, n_iter, dsspec), {})
             for n_iter in range(self.iter_start, self.iter_stop)),
                self.max_queue_len):
            bounds = future.get_result(discard=True)
            for idim in range(ndim):
                current_min, current_max = data_range[idim]
                current_min = min(current_min, bounds[idim][0])
                current_max = max(current_max, bounds[idim][1])
                data_range[idim] = (current_min, current_max)
            self.progress.indicator.progress += 1

    def _construct_bins_from_scalar(self, bins):
        if self.data_range is None:
            self.scan_data_range()

        self.binbounds = []
        self.midpoints = []
        for idim in range(self.ndim):
            lb, ub = self.data_range[idim]
            # Advance just beyond the upper bound of the range, so that we catch
            # the maximum in the histogram
            ub *= 1.01

            boundset = numpy.linspace(lb, ub, bins + 1)
            midpoints = (boundset[:-1] + boundset[1:]) / 2.0
            self.binbounds.append(boundset)
            self.midpoints.append(midpoints)

    def _construct_bins_from_int_seq(self, bins):
        if self.data_range is None:
            self.scan_data_range()

        self.binbounds = []
        self.midpoints = []
        for idim in range(self.ndim):
            lb, ub = self.data_range[idim]
            # Advance just beyond the upper bound of the range, so that we catch
            # the maximum in the histogram
            ub *= 1.01

            boundset = numpy.linspace(lb, ub, bins[idim] + 1)
            midpoints = (boundset[:-1] + boundset[1:]) / 2.0
            self.binbounds.append(boundset)
            self.midpoints.append(midpoints)

    def _construct_bins_from_bound_seqs(self, bins):
        self.binbounds = []
        self.midpoints = []
        for boundset in bins:
            boundset = numpy.asarray(boundset)
            if (numpy.diff(boundset) <= 0).any():
                raise ValueError(
                    'boundary set {!r} is not strictly monotonically increasing'
                    .format(boundset))
            self.binbounds.append(boundset)
            self.midpoints.append((boundset[:-1] + boundset[1:]) / 2.0)

    def construct_histogram(self):
        '''Construct a histogram using bins previously constructed with ``construct_bins()``.
        The time series of histogram values is stored in ``histograms``.
        Each histogram in the time series is normalized.'''

        self.scan_data_shape()

        iter_count = self.iter_stop - self.iter_start
        histograms_ds = self.output_file.create_dataset(
            'histograms',
            dtype=numpy.float64,
            shape=((iter_count, ) +
                   tuple(len(bounds) - 1 for bounds in self.binbounds)),
            compression=9 if self.compress_output else None)
        binbounds = [
            numpy.require(boundset, self.dset_dtype, 'C')
            for boundset in self.binbounds
        ]

        self.progress.indicator.new_operation('Constructing histograms',
                                              self.iter_stop - self.iter_start)
        task_gen = (
            (_remote_bin_iter,
             (iiter, n_iter, self.dsspec, self.wt_dsspec,
              1 if iiter > 0 else 0, binbounds, self.ignore_out_of_range), {})
            for (iiter,
                 n_iter) in enumerate(range(self.iter_start, self.iter_stop)))
        #futures = set()
        #for iiter, n_iter in enumerate(xrange(self.iter_start, self.iter_stop)):
        #    initpoint = 1 if iiter > 0 else 0
        #    futures.add(self.work_manager.submit(_remote_bin_iter,
        #                                            args=(iiter, n_iter, self.dsspec, self.wt_dsspec, initpoint, binbounds)))

        #for future in self.work_manager.as_completed(futures):
        #future = self.work_manager.wait_any(futures)
        #for future in self.work_manager.submit_as_completed(task_gen, self.queue_size):
        log.debug('max queue length: {!r}'.format(self.max_queue_len))
        for future in self.work_manager.submit_as_completed(
                task_gen, self.max_queue_len):
            iiter, n_iter, iter_hist = future.get_result(discard=True)
            self.progress.indicator.progress += 1

            # store histogram
            histograms_ds[iiter] = iter_hist
            del iter_hist, future
Esempio n. 2
0
class WPDist(WESTParallelTool):
    prog='w_pdist'
    description = '''\
Calculate time-resolved, multi-dimensional probability distributions of WE 
datasets.


-----------------------------------------------------------------------------
Source data
-----------------------------------------------------------------------------

Source data is provided either by a user-specified function
(--construct-dataset) or a list of "data set specifications" (--dsspecs).
If neither is provided, the progress coordinate dataset ''pcoord'' is used.

To use a custom function to extract or calculate data whose probability
distribution will be calculated, specify the function in standard Python
MODULE.FUNCTION syntax as the argument to --construct-dataset. This function
will be called as function(n_iter,iter_group), where n_iter is the iteration
whose data are being considered and iter_group is the corresponding group
in the main WEST HDF5 file (west.h5). The function must return data which can
be indexed as [segment][timepoint][dimension].

To use a list of data set specifications, specify --dsspecs and then list the
desired datasets one-by-one (space-separated in most shells). These data set
specifications are formatted as NAME[,file=FILENAME,slice=SLICE], which will
use the dataset called NAME in the HDF5 file FILENAME (defaulting to the main
WEST HDF5 file west.h5), and slice it with the Python slice expression SLICE
(as in [0:2] to select the first two elements of the first axis of the
dataset). The ``slice`` option is most useful for selecting one column (or
more) from a multi-column dataset, such as arises when using a progress
coordinate of multiple dimensions.


-----------------------------------------------------------------------------
Histogram binning
-----------------------------------------------------------------------------

By default, histograms are constructed with 100 bins in each dimension. This
can be overridden by specifying -b/--bins, which accepts a number of different
kinds of arguments:

  a single integer N
    N uniformly spaced bins will be used in each dimension.
    
  a sequence of integers N1,N2,... (comma-separated)
    N1 uniformly spaced bins will be used for the first dimension, N2 for the
    second, and so on.
    
  a list of lists [[B11, B12, B13, ...], [B21, B22, B23, ...], ...]
    The bin boundaries B11, B12, B13, ... will be used for the first dimension,
    B21, B22, B23, ... for the second dimension, and so on. These bin
    boundaries need not be uniformly spaced. These expressions will be
    evaluated with Python's ``eval`` construct, with ``numpy`` available for
    use [e.g. to specify bins using numpy.arange()].

The first two forms (integer, list of integers) will trigger a scan of all
data in each dimension in order to determine the minimum and maximum values,
which may be very expensive for large datasets. This can be avoided by
explicitly providing bin boundaries using the list-of-lists form.

Note that these bins are *NOT* at all related to the bins used to drive WE
sampling.


-----------------------------------------------------------------------------
Output format
-----------------------------------------------------------------------------

The output file produced (specified by -o/--output, defaulting to "pdist.h5")
may be fed to plothist to generate plots (or appropriately processed text or
HDF5 files) from this data. In short, the following datasets are created:

  ``histograms``
    Normalized histograms. The first axis corresponds to iteration, and
    remaining axes correspond to dimensions of the input dataset.
    
  ``/binbounds_0``
    Vector of bin boundaries for the first (index 0) dimension. Additional
    datasets similarly named (/binbounds_1, /binbounds_2, ...) are created
    for additional dimensions.
    
  ``/midpoints_0``
    Vector of bin midpoints for the first (index 0) dimension. Additional
    datasets similarly named are created for additional dimensions.
    
  ``n_iter``
    Vector of iteration numbers corresponding to the stored histograms (i.e.
    the first axis of the ``histograms`` dataset).


-----------------------------------------------------------------------------
Subsequent processing
-----------------------------------------------------------------------------

The output generated by this program (-o/--output, default "pdist.h5") may be
plotted by the ``plothist`` program. See ``plothist --help`` for more
information.

    
-----------------------------------------------------------------------------
Parallelization
-----------------------------------------------------------------------------

This tool supports parallelized binning, including reading of input data.
Parallel processing is the default. For simple cases (reading pre-computed
input data, modest numbers of segments), serial processing (--serial) may be
more efficient.


-----------------------------------------------------------------------------
Command-line options
-----------------------------------------------------------------------------
    
'''
    
    def __init__(self):
        super(WPDist,self).__init__()
        
        # Parallel processing by default (this is not actually necessary, but it is
        # informative!)
        self.wm_env.default_work_manager = self.wm_env.default_parallel_work_manager
        
        # These are used throughout
        self.progress = ProgressIndicatorComponent()
        self.data_reader = WESTDataReader()
        self.input_dssynth = WESTDSSynthesizer(default_dsname='pcoord')
        self.iter_range = IterRangeSelection(self.data_reader)
        self.iter_range.include_args['iter_step'] = False
        self.binspec = None
        self.output_filename = None
        self.output_file = None
        
        
        self.dsspec = None
        self.wt_dsspec = None # dsspec for weights
        
        # These are used during histogram generation only
        self.iter_start = None
        self.iter_stop = None
        self.ndim = None
        self.ntimepoints = None
        self.dset_dtype = None
        self.binbounds = None  # bin boundaries for each dimension
        self.midpoints = None  # bin midpoints for each dimension 
        self.data_range = None # data range for each dimension, as the pairs (min,max)
        self.ignore_out_of_range = False
        self.compress_output = False
        
    
    def add_args(self, parser):
        self.data_reader.add_args(parser)
         
        self.iter_range.add_args(parser)
                
        parser.add_argument('-b', '--bins', dest='bins', metavar='BINEXPR', default='100',
                            help='''Use BINEXPR for bins. This may be an integer, which will be used for each
                            dimension of the progress coordinate; a list of integers (formatted as [n1,n2,...])
                            which will use n1 bins for the first dimension, n2 for the second dimension, and so on;
                            or a list of lists of boundaries (formatted as [[a1, a2, ...], [b1, b2, ...], ... ]), which
                            will use [a1, a2, ...] as bin boundaries for the first dimension, [b1, b2, ...] as bin boundaries
                            for the second dimension, and so on. (Default: 100 bins in each dimension.)''')
        
        parser.add_argument('-o', '--output', dest='output', default='pdist.h5',
                            help='''Store results in OUTPUT (default: %(default)s).''')
        parser.add_argument('-C', '--compress', action='store_true', 
                            help='''Compress histograms. May make storage of higher-dimensional histograms
                            more tractable, at the (possible extreme) expense of increased analysis time.
                            (Default: no compression.)''')
        
        parser.add_argument('--loose', dest='ignore_out_of_range', action='store_true',
                            help='''Ignore values that do not fall within bins. (Risky, as this can make buggy bin
                            boundaries appear as reasonable data. Only use if you are
                            sure of your bin boundary specification.)''')
        
        igroup = parser.add_argument_group('input dataset options').add_mutually_exclusive_group(required=False)

        igroup.add_argument('--construct-dataset',
                            help='''Use the given function (as in module.function) to extract source data.
                            This function will be called once per iteration as function(n_iter, iter_group)
                            to construct data for one iteration. Data returned must be indexable as
                            [seg_id][timepoint][dimension]''')
        
        igroup.add_argument('--dsspecs', nargs='+', metavar='DSSPEC',
                            help='''Construct probability distribution from one or more DSSPECs.''')
        
        self.progress.add_args(parser)
        
    def process_args(self, args):
        self.progress.process_args(args)
        self.data_reader.process_args(args)
        self.input_dssynth.h5filename = self.data_reader.we_h5filename
        self.input_dssynth.process_args(args)
        self.dsspec = self.input_dssynth.dsspec
        
        # Carrying an open HDF5 file across a fork() seems to corrupt the entire HDF5 library
        # Open the WEST HDF5 file just long enough to process our iteration range, then close
        # and reopen in go() [which executes after the fork]
        with self.data_reader:
            self.iter_range.process_args(args)
        
        self.wt_dsspec = SingleIterDSSpec(self.data_reader.we_h5filename, 'seg_index', slice=numpy.index_exp['weight'])
        
        self.binspec = args.bins
        self.output_filename = args.output
        self.ignore_out_of_range = bool(args.ignore_out_of_range)
        self.compress_output = args.compress or False
        
    
    def go(self):
        self.data_reader.open('r')
        pi = self.progress.indicator
        pi.operation = 'Initializing'
        with pi:
            self.output_file = h5py.File(self.output_filename, 'w')
            h5io.stamp_creator_data(self.output_file)
            
            self.iter_start = self.iter_range.iter_start
            self.iter_stop = self.iter_range.iter_stop
    
            # Construct bin boundaries
            self.construct_bins(self.parse_binspec(self.binspec))
            for idim, (binbounds, midpoints) in enumerate(izip(self.binbounds, self.midpoints)):
                self.output_file['binbounds_{}'.format(idim)] = binbounds
                self.output_file['midpoints_{}'.format(idim)] = midpoints
    
            # construct histogram
            self.construct_histogram()
    
            # Record iteration range        
            iter_range = self.iter_range.iter_range()
            self.output_file['n_iter'] = iter_range
            self.iter_range.record_data_iter_range(self.output_file['histograms'])
            
            self.output_file.close()

    @staticmethod    
    def parse_binspec(binspec):
        namespace = {'numpy': numpy,
                     'inf': float('inf')}
                     
        try:
            binspec_compiled = eval(binspec,namespace)
        except Exception as e:
            raise ValueError('invalid bin specification: {!r}'.format(e))
        else:
            if log.isEnabledFor(logging.DEBUG):
                log.debug('bin specs: {!r}'.format(binspec_compiled))
        return binspec_compiled
    
        
    def construct_bins(self, bins):
        '''
        Construct bins according to ``bins``, which may be:
        
          1) A scalar integer (for that number of bins in each dimension)
          2) A sequence of integers (specifying number of bins for each dimension)
          3) A sequence of sequences of bin boundaries (specifying boundaries for each dimension)
          
        Sets ``self.binbounds`` to a list of arrays of bin boundaries appropriate for passing to 
        fasthist.histnd, along with ``self.midpoints`` to the midpoints of the bins.
        '''
        
        if not isiterable(bins):
            self._construct_bins_from_scalar(bins)
        elif not isiterable(bins[0]):
            self._construct_bins_from_int_seq(bins)
        else:
            self._construct_bins_from_bound_seqs(bins)
            
        if log.isEnabledFor(logging.DEBUG):
            log.debug('binbounds: {!r}'.format(self.binbounds))
            
    def scan_data_shape(self):
        if self.ndim is None:
            dset = self.dsspec.get_iter_data(self.iter_start)
            self.ntimepoints = dset.shape[1]
            self.ndim = dset.shape[2]
            self.dset_dtype = dset.dtype
        
            
    def scan_data_range(self):
        '''Scan input data for range in each dimension. The number of dimensions is determined
        from the shape of the progress coordinate as of self.iter_start.'''
        
        self.progress.indicator.new_operation('Scanning for data range', self.iter_stop-self.iter_start)
        self.scan_data_shape()
        
                
        dset_dtype = self.dset_dtype
        ndim = self.ndim
        dsspec = self.dsspec
        
        try:
            minval = numpy.finfo(dset_dtype).min
            maxval = numpy.finfo(dset_dtype).max
        except ValueError:
            minval = numpy.iinfo(dset_dtype).min
            maxval = numpy.iinfo(dset_dtype).max
        
        data_range = self.data_range = [(maxval,minval) for _i in xrange(self.ndim)]

        #futures = []
        #for n_iter in xrange(self.iter_start, self.iter_stop):
            #_remote_min_max(ndim, dset_dtype, n_iter, dsspec)
        #    futures.append(self.work_manager.submit(_remote_min_max, args=(ndim, dset_dtype, n_iter, dsspec)))
        
        #for future in self.work_manager.as_completed(futures):
        for future in self.work_manager.submit_as_completed(((_remote_min_max, (ndim, dset_dtype, n_iter, dsspec), {})
                                                             for n_iter in xrange(self.iter_start, self.iter_stop)),
                                                            self.max_queue_len):
            bounds = future.get_result(discard=True)
            for idim in xrange(ndim):
                current_min, current_max = data_range[idim]
                current_min = min(current_min, bounds[idim][0])
                current_max = max(current_max, bounds[idim][1])
                data_range[idim] = (current_min, current_max)
            self.progress.indicator.progress += 1

    def _construct_bins_from_scalar(self, bins):
        if self.data_range is None:
            self.scan_data_range()        

        self.binbounds = []
        self.midpoints = []        
        for idim in xrange(self.ndim):
            lb, ub = self.data_range[idim]
            # Advance just beyond the upper bound of the range, so that we catch 
            # the maximum in the histogram
            ub *= 1.01
            
            boundset = numpy.linspace(lb,ub,bins+1)
            midpoints = (boundset[:-1] + boundset[1:]) / 2.0
            self.binbounds.append(boundset)
            self.midpoints.append(midpoints)
            
    def _construct_bins_from_int_seq(self, bins):
        if self.data_range is None:
            self.scan_data_range()        

        self.binbounds = []
        self.midpoints = []        
        for idim in xrange(self.ndim):
            lb, ub = self.data_range[idim]
            # Advance just beyond the upper bound of the range, so that we catch 
            # the maximum in the histogram
            ub *= 1.01
            
            boundset = numpy.linspace(lb,ub,bins[idim]+1)
            midpoints = (boundset[:-1] + boundset[1:]) / 2.0
            self.binbounds.append(boundset)
            self.midpoints.append(midpoints)
               
    def _construct_bins_from_bound_seqs(self, bins):
        self.binbounds = []
        self.midpoints = []
        for boundset in bins:
            boundset = numpy.asarray(boundset)
            if (numpy.diff(boundset) <= 0).any():
                raise ValueError('boundary set {!r} is not strictly monotonically increasing'.format(boundset))
            self.binbounds.append(boundset)
            self.midpoints.append((boundset[:-1]+boundset[1:])/2.0)
            
    def construct_histogram(self):
        '''Construct a histogram using bins previously constructed with ``construct_bins()``.
        The time series of histogram values is stored in ``histograms``.
        Each histogram in the time series is normalized.'''
        
        self.scan_data_shape()
        
        iter_count = self.iter_stop - self.iter_start
        histograms_ds = self.output_file.create_dataset('histograms', dtype=numpy.float64,
                                                        shape=((iter_count,) + tuple(len(bounds)-1 for bounds in self.binbounds)),
                                                        compression=9 if self.compress_output else None)
        binbounds = [numpy.require(boundset, self.dset_dtype, 'C') for boundset in self.binbounds]
        
        self.progress.indicator.new_operation('Constructing histograms',self.iter_stop-self.iter_start)
        task_gen = ((_remote_bin_iter, (iiter, n_iter, self.dsspec, self.wt_dsspec, 1 if iiter > 0 else 0, binbounds,
                                        self.ignore_out_of_range), {}) 
                    for (iiter,n_iter) in enumerate(xrange(self.iter_start, self.iter_stop)))
        #futures = set()
        #for iiter, n_iter in enumerate(xrange(self.iter_start, self.iter_stop)):
        #    initpoint = 1 if iiter > 0 else 0
        #    futures.add(self.work_manager.submit(_remote_bin_iter,
        #                                            args=(iiter, n_iter, self.dsspec, self.wt_dsspec, initpoint, binbounds)))
        
        #for future in self.work_manager.as_completed(futures):
            #future = self.work_manager.wait_any(futures)
        #for future in self.work_manager.submit_as_completed(task_gen, self.queue_size):
        log.debug('max queue length: {!r}'.format(self.max_queue_len))
        for future in self.work_manager.submit_as_completed(task_gen, self.max_queue_len):
            iiter, n_iter, iter_hist = future.get_result(discard=True)
            self.progress.indicator.progress += 1

            # store histogram
            histograms_ds[iiter] = iter_hist
            del iter_hist, future
Esempio n. 3
0
class WFluxanlTool(WESTTool):
    prog = 'w_fluxanl'
    description = '''\
Extract fluxes into pre-defined target states from WEST data,
average, and construct confidence intervals. Monte Carlo bootstrapping
is used to account for the correlated and possibly non-Gaussian statistical
error in flux measurements.

All non-graphical output (including that to the terminal and HDF5) assumes that
the propagation/resampling period ``tau`` is equal to unity; to obtain results
in familiar units, divide all fluxes and multiply all correlation lengths by
the true value of ``tau``.
'''

    output_format_version = 2

    def __init__(self):
        super(WFluxanlTool, self).__init__()
        self.data_reader = WESTDataReader()
        self.iter_range = IterRangeSelection()
        self.output_h5file = None
        self.output_group = None
        self.target_groups = {}

        self.fluxdata = {}

        self.alpha = None
        self.autocorrel_alpha = None
        self.n_sets = None
        self.do_evol = False
        self.evol_step = 1

    def add_args(self, parser):
        self.data_reader.add_args(parser)
        self.iter_range.add_args(parser)
        ogroup = parser.add_argument_group('output options')
        ogroup.add_argument(
            '-o',
            '--output',
            default='fluxanl.h5',
            help=
            'Store intermediate data and analysis results to OUTPUT (default: %(default)s).'
        )
        cgroup = parser.add_argument_group('calculation options')
        cgroup.add_argument(
            '--disable-bootstrap',
            '-db',
            dest='bootstrap',
            action='store_const',
            const=False,
            help='''Enable the use of Monte Carlo Block Bootstrapping.''')
        cgroup.add_argument('--disable-correl',
                            '-dc',
                            dest='correl',
                            action='store_const',
                            const=False,
                            help='''Disable the correlation analysis.''')
        cgroup.add_argument(
            '-a',
            '--alpha',
            type=float,
            default=0.05,
            help=
            '''Calculate a (1-ALPHA) confidence interval on the average flux'
                             (default: %(default)s)''')
        cgroup.add_argument(
            '--autocorrel-alpha',
            type=float,
            dest='acalpha',
            metavar='ACALPHA',
            help='''Evaluate autocorrelation of flux to (1-ACALPHA) significance.
                             Note that too small an ACALPHA will result in failure to detect autocorrelation
                             in a noisy flux signal. (Default: same as ALPHA.)'''
        )
        cgroup.add_argument(
            '-N',
            '--nsets',
            type=int,
            help=
            '''Use NSETS samples for bootstrapping (default: chosen based on ALPHA)'''
        )
        cgroup.add_argument(
            '--evol',
            action='store_true',
            dest='do_evol',
            help=
            '''Calculate time evolution of flux confidence intervals (expensive).'''
        )
        cgroup.add_argument(
            '--evol-step',
            type=int,
            default=1,
            metavar='ESTEP',
            help=
            '''Calculate time evolution of flux confidence intervals every ESTEP
                            iterations (default: %(default)s)''')

    def process_args(self, args):
        self.data_reader.process_args(args)
        self.data_reader.open()
        self.iter_range.data_manager = self.data_reader
        self.iter_range.process_args(args)

        self.output_h5file = h5py.File(args.output, 'w')

        self.alpha = args.alpha
        # Disable the bootstrap or the correlation analysis.
        self.mcbs_enable = args.bootstrap if args.bootstrap is not None else True
        self.do_correl = args.correl if args.correl is not None else True
        self.autocorrel_alpha = args.acalpha or self.alpha
        self.n_sets = args.nsets or mclib.get_bssize(self.alpha)

        self.do_evol = args.do_evol
        self.evol_step = args.evol_step or 1

    def calc_store_flux_data(self):
        westpa.rc.pstatus(
            'Calculating mean flux and confidence intervals for iterations [{},{})'
            .format(self.iter_range.iter_start, self.iter_range.iter_stop))

        fluxdata = extract_fluxes(self.iter_range.iter_start,
                                  self.iter_range.iter_stop, self.data_reader)

        # Create a group to store data in
        output_group = h5io.create_hdf5_group(self.output_h5file,
                                              'target_flux',
                                              replace=False,
                                              creating_program=self.prog)
        self.output_group = output_group
        output_group.attrs['version_code'] = self.output_format_version
        self.iter_range.record_data_iter_range(output_group)

        n_targets = len(fluxdata)
        index = numpy.empty((len(fluxdata), ), dtype=target_index_dtype)
        avg_fluxdata = numpy.empty((n_targets, ), dtype=ci_dtype)

        for itarget, (target_label,
                      target_fluxdata) in enumerate(fluxdata.items()):
            # Create group and index entry
            index[itarget]['target_label'] = str(target_label)
            target_group = output_group.create_group(
                'target_{}'.format(itarget))

            self.target_groups[target_label] = target_group

            # Store per-iteration values
            target_group['n_iter'] = target_fluxdata['n_iter']
            target_group['count'] = target_fluxdata['count']
            target_group['flux'] = target_fluxdata['flux']
            h5io.label_axes(target_group['flux'], ['n_iter'], units=['tau^-1'])

            # Calculate flux autocorrelation
            fluxes = target_fluxdata['flux']
            mean_flux = fluxes.mean()
            fmm = fluxes - mean_flux
            acorr = fftconvolve(fmm, fmm[::-1])
            acorr = acorr[len(acorr) // 2:]
            acorr /= acorr[0]
            acorr_ds = target_group.create_dataset('flux_autocorrel',
                                                   data=acorr)
            h5io.label_axes(acorr_ds, ['lag'], ['tau'])

            # Calculate overall averages and CIs
            #avg, lb_ci, ub_ci, correl_len = mclib.mcbs_ci_correl(fluxes, numpy.mean, self.alpha, self.n_sets,
            #                                                     autocorrel_alpha=self.autocorrel_alpha, subsample=numpy.mean)
            avg, lb_ci, ub_ci, sterr, correl_len = mclib.mcbs_ci_correl(
                {'dataset': fluxes},
                estimator=(lambda stride, dataset: numpy.mean(dataset)),
                alpha=self.alpha,
                n_sets=self.n_sets,
                autocorrel_alpha=self.autocorrel_alpha,
                subsample=numpy.mean,
                do_correl=self.do_correl,
                mcbs_enable=self.mcbs_enable)
            avg_fluxdata[itarget] = (self.iter_range.iter_start,
                                     self.iter_range.iter_stop, avg, lb_ci,
                                     ub_ci, sterr, correl_len)
            westpa.rc.pstatus('target {!r}:'.format(target_label))
            westpa.rc.pstatus(
                '  correlation length = {} tau'.format(correl_len))
            westpa.rc.pstatus(
                '  mean flux and CI   = {:e} ({:e},{:e}) tau^(-1)'.format(
                    avg, lb_ci, ub_ci))
            index[itarget]['mean_flux'] = avg
            index[itarget]['mean_flux_ci_lb'] = lb_ci
            index[itarget]['mean_flux_ci_ub'] = ub_ci
            index[itarget]['mean_flux_correl_len'] = correl_len

        # Write index and summary
        index_ds = output_group.create_dataset('index', data=index)
        index_ds.attrs['mcbs_alpha'] = self.alpha
        index_ds.attrs['mcbs_autocorrel_alpha'] = self.autocorrel_alpha
        index_ds.attrs['mcbs_n_sets'] = self.n_sets

        self.fluxdata = fluxdata
        self.output_h5file['avg_flux'] = avg_fluxdata

    def calc_evol_flux(self):
        westpa.rc.pstatus(
            'Calculating cumulative evolution of flux confidence intervals every {} iteration(s)'
            .format(self.evol_step))

        for itarget, (target_label,
                      target_fluxdata) in enumerate(self.fluxdata.items()):
            fluxes = target_fluxdata['flux']
            target_group = self.target_groups[target_label]
            iter_start = target_group['n_iter'][0]
            iter_stop = target_group['n_iter'][-1]
            iter_count = iter_stop - iter_start
            n_blocks = iter_count // self.evol_step
            if iter_count % self.evol_step > 0: n_blocks += 1

            cis = numpy.empty((n_blocks, ), dtype=ci_dtype)

            for iblock in range(n_blocks):
                block_iter_stop = min(
                    iter_start + (iblock + 1) * self.evol_step, iter_stop)
                istop = min((iblock + 1) * self.evol_step,
                            len(target_fluxdata['flux']))
                fluxes = target_fluxdata['flux'][:istop]

                #avg, ci_lb, ci_ub, correl_len = mclib.mcbs_ci_correl(fluxes, numpy.mean, self.alpha, self.n_sets,
                #                                                     autocorrel_alpha = self.autocorrel_alpha,
                #                                                     subsample=numpy.mean)
                avg, ci_lb, ci_ub, sterr, correl_len = mclib.mcbs_ci_correl(
                    {'dataset': fluxes},
                    estimator=(lambda stride, dataset: numpy.mean(dataset)),
                    alpha=self.alpha,
                    n_sets=self.n_sets,
                    autocorrel_alpha=self.autocorrel_alpha,
                    subsample=numpy.mean,
                    do_correl=self.do_correl,
                    mcbs_enable=self.mcbs_enable)
                cis[iblock]['iter_start'] = iter_start
                cis[iblock]['iter_stop'] = block_iter_stop
                cis[iblock]['expected'], cis[iblock]['ci_lbound'], cis[iblock][
                    'ci_ubound'] = avg, ci_lb, ci_ub
                cis[iblock]['corr_len'] = correl_len
                cis[iblock]['sterr'] = sterr

                del fluxes

            cis_ds = target_group.create_dataset('flux_evolution', data=cis)
            cis_ds.attrs['iter_step'] = self.evol_step
            cis_ds.attrs['mcbs_alpha'] = self.alpha
            cis_ds.attrs['mcbs_autocorrel_alpha'] = self.autocorrel_alpha
            cis_ds.attrs['mcbs_n_sets'] = self.n_sets

    def go(self):
        self.calc_store_flux_data()
        if self.do_evol:
            self.calc_evol_flux()
Esempio n. 4
0
class WFluxanlTool(WESTTool):
    prog='w_fluxanl'
    description = '''\
Extract fluxes into pre-defined target states from WEST data,
average, and construct confidence intervals. Monte Carlo bootstrapping
is used to account for the correlated and possibly non-Gaussian statistical
error in flux measurements.

All non-graphical output (including that to the terminal and HDF5) assumes that
the propagation/resampling period ``tau`` is equal to unity; to obtain results
in familiar units, divide all fluxes and multiply all correlation lengths by
the true value of ``tau``.
'''
    
    output_format_version = 2

    def __init__(self):
        super(WFluxanlTool,self).__init__()
        self.data_reader = WESTDataReader()
        self.iter_range = IterRangeSelection()
        self.output_h5file = None
        self.output_group = None
        self.target_groups = {}

        self.fluxdata = {}
        
        self.alpha = None
        self.autocorrel_alpha = None
        self.n_sets = None
        self.do_evol = False
        self.evol_step = 1
        
    def add_args(self, parser):
        self.data_reader.add_args(parser)
        self.iter_range.add_args(parser)
        ogroup = parser.add_argument_group('output options')
        ogroup.add_argument('-o', '--output', default='fluxanl.h5',
                            help='Store intermediate data and analysis results to OUTPUT (default: %(default)s).')
        cgroup = parser.add_argument_group('calculation options')
        cgroup.add_argument('--disable-bootstrap', '-db', dest='bootstrap', action='store_const', const=False,
                             help='''Enable the use of Monte Carlo Block Bootstrapping.''')
        cgroup.add_argument('--disable-correl', '-dc', dest='correl', action='store_const', const=False,
                             help='''Disable the correlation analysis.''')
        cgroup.add_argument('-a', '--alpha', type=float, default=0.05, 
                             help='''Calculate a (1-ALPHA) confidence interval on the average flux'
                             (default: %(default)s)''')
        cgroup.add_argument('--autocorrel-alpha', type=float, dest='acalpha', metavar='ACALPHA',
                             help='''Evaluate autocorrelation of flux to (1-ACALPHA) significance.
                             Note that too small an ACALPHA will result in failure to detect autocorrelation
                             in a noisy flux signal. (Default: same as ALPHA.)''')
        cgroup.add_argument('-N', '--nsets', type=int,
                             help='''Use NSETS samples for bootstrapping (default: chosen based on ALPHA)''')
        cgroup.add_argument('--evol', action='store_true', dest='do_evol',
                            help='''Calculate time evolution of flux confidence intervals (expensive).''')
        cgroup.add_argument('--evol-step', type=int, default=1, metavar='ESTEP',
                            help='''Calculate time evolution of flux confidence intervals every ESTEP
                            iterations (default: %(default)s)''')
        
        
    def process_args(self, args):
        self.data_reader.process_args(args)
        self.data_reader.open()
        self.iter_range.data_manager = self.data_reader
        self.iter_range.process_args(args)
        
        self.output_h5file = h5py.File(args.output, 'w')
        
        self.alpha = args.alpha
        # Disable the bootstrap or the correlation analysis.
        self.mcbs_enable = args.bootstrap if args.bootstrap is not None else True
        self.do_correl = args.correl if args.correl is not None else True
        self.autocorrel_alpha = args.acalpha or self.alpha
        self.n_sets = args.nsets or mclib.get_bssize(self.alpha)
        
        self.do_evol = args.do_evol
        self.evol_step = args.evol_step or 1
                
    def calc_store_flux_data(self):         
        westpa.rc.pstatus('Calculating mean flux and confidence intervals for iterations [{},{})'
                        .format(self.iter_range.iter_start, self.iter_range.iter_stop))
        
        fluxdata = extract_fluxes(self.iter_range.iter_start, self.iter_range.iter_stop, self.data_reader)
        
        # Create a group to store data in
        output_group = h5io.create_hdf5_group(self.output_h5file, 'target_flux', replace=False, creating_program=self.prog)        
        self.output_group = output_group
        output_group.attrs['version_code'] = self.output_format_version
        self.iter_range.record_data_iter_range(output_group)
        
        n_targets = len(fluxdata)
        index = numpy.empty((len(fluxdata),), dtype=target_index_dtype)
        avg_fluxdata = numpy.empty((n_targets,), dtype=ci_dtype)
        

        for itarget, (target_label, target_fluxdata) in enumerate(fluxdata.iteritems()):
            # Create group and index entry
            index[itarget]['target_label'] = str(target_label)
            target_group = output_group.create_group('target_{}'.format(itarget))

            self.target_groups[target_label] = target_group
            
            # Store per-iteration values
            target_group['n_iter'] = target_fluxdata['n_iter']
            target_group['count'] = target_fluxdata['count']
            target_group['flux'] = target_fluxdata['flux']
            h5io.label_axes(target_group['flux'], ['n_iter'], units=['tau^-1'])
            
            
            # Calculate flux autocorrelation
            fluxes = target_fluxdata['flux']
            mean_flux = fluxes.mean()
            fmm = fluxes - mean_flux
            acorr = fftconvolve(fmm,fmm[::-1])
            acorr = acorr[len(acorr)//2:]
            acorr /= acorr[0]
            acorr_ds = target_group.create_dataset('flux_autocorrel', data=acorr)
            h5io.label_axes(acorr_ds, ['lag'], ['tau'])
            
            # Calculate overall averages and CIs
            #avg, lb_ci, ub_ci, correl_len = mclib.mcbs_ci_correl(fluxes, numpy.mean, self.alpha, self.n_sets,
            #                                                     autocorrel_alpha=self.autocorrel_alpha, subsample=numpy.mean)
            avg, lb_ci, ub_ci, sterr, correl_len = mclib.mcbs_ci_correl({'dataset': fluxes}, estimator=(lambda stride, dataset: numpy.mean(dataset)), alpha=self.alpha, n_sets=self.n_sets,
                                                                 autocorrel_alpha=self.autocorrel_alpha, subsample=numpy.mean, do_correl=self.do_correl, mcbs_enable=self.mcbs_enable )
            avg_fluxdata[itarget] = (self.iter_range.iter_start, self.iter_range.iter_stop, avg, lb_ci, ub_ci, sterr, correl_len)
            westpa.rc.pstatus('target {!r}:'.format(target_label))
            westpa.rc.pstatus('  correlation length = {} tau'.format(correl_len))
            westpa.rc.pstatus('  mean flux and CI   = {:e} ({:e},{:e}) tau^(-1)'.format(avg,lb_ci,ub_ci))
            index[itarget]['mean_flux'] = avg
            index[itarget]['mean_flux_ci_lb'] = lb_ci
            index[itarget]['mean_flux_ci_ub'] = ub_ci
            index[itarget]['mean_flux_correl_len'] = correl_len

        # Write index and summary        
        index_ds = output_group.create_dataset('index', data=index)
        index_ds.attrs['mcbs_alpha'] = self.alpha
        index_ds.attrs['mcbs_autocorrel_alpha'] = self.autocorrel_alpha
        index_ds.attrs['mcbs_n_sets'] = self.n_sets
        
        self.fluxdata = fluxdata
        self.output_h5file['avg_flux'] = avg_fluxdata
        
        
         
    def calc_evol_flux(self):
        westpa.rc.pstatus('Calculating cumulative evolution of flux confidence intervals every {} iteration(s)'
                        .format(self.evol_step))
        
        for itarget, (target_label, target_fluxdata) in enumerate(self.fluxdata.iteritems()):
            fluxes = target_fluxdata['flux']
            target_group = self.target_groups[target_label]
            iter_start = target_group['n_iter'][0]
            iter_stop  = target_group['n_iter'][-1]
            iter_count = iter_stop - iter_start
            n_blocks = iter_count // self.evol_step
            if iter_count % self.evol_step > 0: n_blocks += 1
            
            cis = numpy.empty((n_blocks,), dtype=ci_dtype)
            
            for iblock in xrange(n_blocks):
                block_iter_stop = min(iter_start + (iblock+1)*self.evol_step, iter_stop)
                istop = min((iblock+1)*self.evol_step, len(target_fluxdata['flux']))
                fluxes = target_fluxdata['flux'][:istop]
                
                #avg, ci_lb, ci_ub, correl_len = mclib.mcbs_ci_correl(fluxes, numpy.mean, self.alpha, self.n_sets,
                #                                                     autocorrel_alpha = self.autocorrel_alpha,
                #                                                     subsample=numpy.mean)
                avg, ci_lb, ci_ub, sterr, correl_len = mclib.mcbs_ci_correl({'dataset': fluxes}, estimator=(lambda stride, dataset: numpy.mean(dataset)), alpha=self.alpha, n_sets=self.n_sets,
                                                                     autocorrel_alpha = self.autocorrel_alpha,
                                                                     subsample=numpy.mean, do_correl=self.do_correl, mcbs_enable=self.mcbs_enable )
                cis[iblock]['iter_start'] = iter_start
                cis[iblock]['iter_stop']  = block_iter_stop
                cis[iblock]['expected'], cis[iblock]['ci_lbound'], cis[iblock]['ci_ubound'] = avg, ci_lb, ci_ub
                cis[iblock]['corr_len'] = correl_len
                cis[iblock]['sterr'] = sterr
                
                del fluxes

            cis_ds = target_group.create_dataset('flux_evolution', data=cis)
            cis_ds.attrs['iter_step'] = self.evol_step
            cis_ds.attrs['mcbs_alpha'] = self.alpha
            cis_ds.attrs['mcbs_autocorrel_alpha'] = self.autocorrel_alpha
            cis_ds.attrs['mcbs_n_sets'] = self.n_sets

        
    def go(self):
        self.calc_store_flux_data()
        if self.do_evol:
            self.calc_evol_flux()