Esempio n. 1
0
def train(cfg, local_rank, distributed, use_tensorboard=False):
    model = build_detection_model(cfg)
    device = torch.device(cfg.MODEL.DEVICE)
    model.to(device)

    optimizer = make_optimizer(cfg, model)
    scheduler = make_lr_scheduler(cfg, optimizer)

    # Initialize mixed-precision training
    use_mixed_precision = cfg.DTYPE == "float16"
    amp_opt_level = 'O1' if use_mixed_precision else 'O0'
    model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level)

    if distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[local_rank], output_device=local_rank,
            # this should be removed if we update BatchNorm stats
            broadcast_buffers=False, find_unused_parameters=True,
        )

    arguments = {"iteration": 0, "iter_size": cfg.SOLVER.ITER_SIZE}
    output_dir = cfg.OUTPUT_DIR
    save_to_disk = get_rank() == 0
    checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
    checkpointer = DetectronCheckpointer(
        cfg, model, optimizer, scheduler, output_dir, save_to_disk
    )
    extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
    arguments.update(extra_checkpoint_data)

    data_loader = make_data_loader(
        cfg,
        is_train=True,
        is_distributed=distributed,
        start_iter=arguments["iteration"],
    )

    if use_tensorboard:
        meters = TensorboardLogger(
            log_dir=os.path.join(cfg['OUTPUT_DIR'], 'log/'),
            start_iter=arguments['iteration'],
            delimiter="  ")
    else:
        meters = MetricLogger(delimiter="  ")
        
    do_train(
        model,
        data_loader,
        optimizer,
        scheduler,
        checkpointer,
        device,
        checkpoint_period,
        arguments,
        meters
    )

    return model
Esempio n. 2
0
def train_cdb(cfg, local_rank, distributed, use_tensorboard=False):
    model = build_detection_model(cfg)
    device = torch.device(cfg.MODEL.DEVICE)
    model.to(device)
    model_cdb = ConvConcreteDB(cfg, model.backbone.out_channels)
    model_cdb.to(device)

    optimizer = make_optimizer(cfg, model)
    scheduler = make_lr_scheduler(cfg, optimizer)
    optimizer_cdb = make_cdb_optimizer(cfg, model_cdb)
    scheduler_cdb = make_lr_cdb_scheduler(cfg, optimizer_cdb)

    # Initialize mixed-precision training
    use_mixed_precision = cfg.DTYPE == "float16"
    amp_opt_level = 'O1' if use_mixed_precision else 'O0'
    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=amp_opt_level)
    model_cdb, optimizer_cdb, = amp.initialize(model_cdb,
                                               optimizer_cdb,
                                               opt_level=amp_opt_level)

    if distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[local_rank],
            output_device=local_rank,
            # this should be removed if we update BatchNorm stats
            broadcast_buffers=False,
            find_unused_parameters=True,
        )
        model_cdb = torch.nn.parallel.DistributedDataParallel(
            model_cdb,
            device_ids=[local_rank],
            output_device=local_rank,
            # this should be removed if we update BatchNorm stats
            broadcast_buffers=False,
            find_unused_parameters=True,
        )

    arguments = {"iteration": 0}
    output_dir = cfg.OUTPUT_DIR
    save_to_disk = get_rank() == 0
    checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
    # TODO: check whether the *_cdb is properly loaded for inference when using 1 GPU
    checkpointer = DetectronCheckpointer(cfg,
                                         model,
                                         optimizer,
                                         scheduler,
                                         output_dir,
                                         save_to_disk,
                                         model_cdb=model_cdb)
    extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
    arguments.update(extra_checkpoint_data)

    print('Do CFG_DIRE', cfg.PATH_DATA_TRAIN)
    data_loader = make_data_loader(
        cfg,
        is_train=True,
        is_distributed=distributed,
        start_iter=arguments["iteration"],
    )

    if use_tensorboard:
        meters = TensorboardLogger(log_dir=os.path.join(
            cfg['OUTPUT_DIR'], 'log/'),
                                   start_iter=arguments['iteration'],
                                   delimiter="  ")
    else:
        meters = MetricLogger(delimiter="  ")

    do_train_cdb(model, model_cdb, data_loader, optimizer, optimizer_cdb,
                 scheduler, scheduler_cdb, checkpointer, device,
                 checkpoint_period, arguments, meters, cfg)

    return model
Esempio n. 3
0
def main():
    parser = argparse.ArgumentParser(
        description="PyTorch Object Detection Inference")
    parser.add_argument(
        "--config-file",
        default=
        "/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument(
        "--ckpt",
        help=
        "The path to the checkpoint for test, default is the latest checkpoint.",
        default=None,
    )
    parser.add_argument(
        "--task",
        default="det",
        type=str,
        help="eval task: det | corloc",
    )
    parser.add_argument(
        "--vis",
        dest="vis",
        help="Visualize the final results",
        action="store_true",
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    distributed = num_gpus > 1

    if distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl",
                                             init_method="env://")
        synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    save_dir = ""
    logger = setup_logger("wetectron", save_dir, get_rank())
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(cfg)

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())
    model = build_detection_model(cfg)
    model.to(cfg.MODEL.DEVICE)

    # Initialize mixed-precision if necessary
    use_mixed_precision = cfg.DTYPE == 'float16'
    amp_handle = amp.init(enabled=use_mixed_precision, verbose=cfg.AMP_VERBOSE)

    output_dir = cfg.OUTPUT_DIR
    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt

    _ = checkpointer.load(ckpt, use_latest=args.ckpt is None)

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints", )
    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference",
                                         dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg,
                                        is_train=False,
                                        is_distributed=distributed)
    for output_folder, dataset_name, data_loader_val in zip(
            output_folders, dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
            device=cfg.MODEL.DEVICE,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            output_folder=output_folder,
            vis=args.vis,
            task=args.task,
        )
        synchronize()