def get_args_parser(): import argparse from argparse import RawTextHelpFormatter desc = 'Uses WiFi signals and machine learning to predict where you are.' desc += '\nFeel free to try out commands, if anything is missing it will print help.' desc += '\n\nYou will want to start with `whereami learn`' p = argparse.ArgumentParser(description=desc, formatter_class=RawTextHelpFormatter) p.add_argument('--version', '-v', action='version', version=print_version()) subparsers = p.add_subparsers(dest="command") subparsers.add_parser('predict') subparsers.add_parser('predict_proba') subparsers.add_parser('crossval') subparsers.add_parser('locations') learn_parser = subparsers.add_parser('learn') learn_parser.add_argument('--location', '-l', required=True, help='A name-tag for location to learn.') learn_parser.add_argument('--num_samples', '-n', type=int, default=100, help='Number of samples to take') return p
def get_args_parser(): import argparse from argparse import RawTextHelpFormatter desc = 'Uses WiFi signals and machine learning to predict where you are.' desc += '\nFeel free to try out commands, if anything is missing it will print help.' desc += '\n\nYou will want to start with `whereami learn`' p = argparse.ArgumentParser(description=desc, formatter_class=RawTextHelpFormatter) p.add_argument('--version', '-v', action='version', version=print_version()) subparsers = p.add_subparsers(dest="command") predict_parser = subparsers.add_parser('predict') predict_parser.add_argument('--input_path', '-ip', default=None, help='The directory containing current.loc.txt') predict_parser.add_argument('--model_path', '-mp', default=None, help='The directory of the model / trained data') predict_parser.add_argument( '--device', '-d', default="", help='Change the wifi device to use') predict_proba_parser = subparsers.add_parser('predict_proba') predict_proba_parser.add_argument( '--input_path', '-ip', default=None, help='The directory containing current.loc.txt') predict_proba_parser.add_argument( '--model_path', '-mp', default=None, help='The directory of the model / trained data') predict_proba_parser.add_argument( '--device', '-d', default="", help='Change the wifi device to use') crossval_parser = subparsers.add_parser('crossval') crossval_parser.add_argument('--model_path', '-mp', default=None, help='The directory of the model / trained data') ls_parser = subparsers.add_parser('ls') ls_parser.add_argument('--model_path', '-mp', default=None, help='The directory of the model / trained data') locations_parser = subparsers.add_parser('locations') locations_parser.add_argument('--model_path', '-mp', default=None, help='The directory of the model / trained data') learn_parser = subparsers.add_parser('learn') learn_parser.add_argument('--location', '-l', required=True, help='A name-tag for location to learn.') learn_parser.add_argument('--device', '-d', default="", help='Change the wifi device to use') learn_parser.add_argument('--num_samples', '-n', type=int, default=100, help='Number of samples to take') rename = subparsers.add_parser('rename') rename.add_argument('--label', help='Label to rename') rename.add_argument('--new_label', help='New label name') rename.add_argument('--model_path', '-mp', default=None, help='The directory of the model / trained data') train_parser = subparsers.add_parser('train') train_parser.add_argument('--model_path', '-mp', default=None, help='The directory of the model / trained data') return p
def test_print(): assert print_version()