Esempio n. 1
0
    sub = dict(loc='workstation', id=i)
    param = get_subject_info_wmConfidence(sub)

    #get the epoched data
    epochs = mne.read_epochs(
        fname=param['fblocked'],
        preload=True)  #this is loaded in with the metadata
    epochs.set_eeg_reference(['RM'])
    epochs.apply_baseline((-.25, 0))  #baseline 250ms prior to feedback
    epochs.resample(500)  #resample to 500Hz
    ntrials = len(epochs)

    #will do an automated process of looking for trials with heightened variance (noise) and output which trials to keep
    _, keeps = plot_AR(epochs,
                       method='gesd',
                       zthreshold=1.5,
                       p_out=.1,
                       alpha=.05,
                       outlier_side=1)
    plt.close()
    keeps = keeps.flatten()

    discards = np.ones(len(epochs), dtype='bool')
    discards[keeps] = False
    epochs = epochs.drop(
        discards)  #first we'll drop trials with excessive noise in the EEG

    epochs = epochs['DTcheck == 0 and clickresp == 1']
    print('a total of %d trials have been dropped for this subjects' %
          (ntrials - len(epochs)))

    glmdata = glm.data.TrialGLMData(data=epochs.get_data(),
Esempio n. 2
0
            cuelocked = cuelocked.pick_types(
                eeg=True, misc=True
            )  #if you don't do this, and run the gesd, then it can fail if the EOG variance makes trialwise variance estimation terrible
            #we don't need the eogs at this point anyways because we ica'd out blinks etc, so its just extra data to take up space

            bdata = cuelocked.metadata
            prevtrlerr = bdata.shift(1).absrdif.to_numpy()
            bdata['prevtrlerr'] = bdata.shift(1).absrdif.to_numpy()
            bdata['prevtrlconf'] = bdata.shift(1).confwidth.to_numpy()

            cuelocked.metadata = bdata

            #will do an automated process of looking for trials with heightened variance (noise) and output which trials to keep
            _, keeps = plot_AR(cuelocked,
                               method='gesd',
                               zthreshold=1.5,
                               p_out=.1,
                               alpha=.05,
                               outlier_side=1)
            keeps = keeps.flatten()

            discards = np.ones(len(cuelocked), dtype='bool')
            discards[keeps] = False
            cuelocked = cuelocked.drop(
                discards
            )  #first we'll drop trials with excessive noise in the EEG

            #now we'll drop trials with behaviour problems (reaction time +/- 2.5 SDs of mean, didn't click to report orientation)
            cuelocked = cuelocked['DTcheck == 0 and clickresp == 1']
            cuelocked.set_eeg_reference(ref_channels=[
                'RM'
            ])  #re-reference to average of the two mastoids
Esempio n. 3
0
        bdata2 = pd.read_csv(param['behaviour_blinkchecked2'], index_col=None)
        bdata2['prevtrlconfdiff'] = bdata2.confdiff.shift(
            1
        )  #write down on each trial what the previous trial error awareness was
        bdata2['nexttrlconfdiff'] = bdata2.confdiff.shift(
            -1
        )  #write down on each trial what the next trials error awareness is (used in glm)

        arraylocked1.metadata = bdata1
        arraylocked2.metadata = bdata2

        #        arraylocked = mne.concatenate_epochs([arraylocked1, arraylocked2]) #combine the epoched data with aligned metadata

        _, keeps = plot_AR(deepcopy(arraylocked1).pick_types(eeg=True),
                           method='gesd',
                           zthreshold=1.5,
                           p_out=.1,
                           alpha=.05,
                           outlier_side=1)
        keeps = keeps.flatten()

        discards = np.ones(len(arraylocked1), dtype='bool')
        discards[keeps] = False
        arraylocked1 = arraylocked1.drop(
            discards)  #first we'll drop trials with excessive noise in the EEG

        #now we'll drop trials with behaviour problems (reaction time +/- 2.5 SDs of mean, didn't click to report orientation)
        arraylocked1 = arraylocked1['DTcheck == 0 and clickresp == 1']

        _, keeps = plot_AR(deepcopy(arraylocked2).pick_types(eeg=True),
                           method='gesd',
                           zthreshold=1.5,
    print('\n\nworking on subject ' + str(i) + '\n\n')
    sub = dict(loc='workstation', id=i)
    param = get_subject_info_wmConfidence(sub)

    probelocked = mne.epochs.read_epochs(fname=param['probelocked'],
                                         preload=True)  #read raw data
    probelocked.resample(
        100
    )  #downsample to 250Hz so don't overwork the workstation (100hz should be fine for frequencies up to 50Hz in brain)

    #will do an automated process of looking for trials with heightened variance (noise) and output which trials to keep
    if i != 18:
        _, keeps = plot_AR(
            probelocked,
            method='gesd',
            zthreshold=1.5,
            p_out=.1,
            alpha=.05,
            outlier_side=1)  #this fails on subject 18 for some fking reason
        keeps = keeps.flatten()

        discards = np.ones(len(probelocked), dtype='bool')
        discards[keeps] = False
        probelocked = probelocked.drop(
            discards)  #first we'll drop trials with excessive noise in the EEG

    #now we'll drop trials with behaviour problems (reaction time +/- 2.5 SDs of mean, didn't click to report orientation)
    probelocked = probelocked[
        'DTcheck == 0 and clickresp == 1 and arraycueblink == 0']  #also exclude trials where blinks happened in the array or cue period
    probelocked.set_eeg_reference(
        ref_channels=['RM'])  #re-reference to average of the two mastoids
Esempio n. 5
0
        #bad channels get marked and cant concatenate epochs unless these are the same
        if cuelocked1.info['bads'] != []:
            cuelocked1.interpolate_bads(reset_bads=True)
        if cuelocked2.info['bads'] != []:
            cuelocked2.interpolate_bads(reset_bads=True)

        cuelocked = mne.concatenate_epochs(
            [cuelocked1,
             cuelocked2])  #combine the epoched data with aligned metadata

        #trial rejection here
        #step1 - automated gesd removal
        #step 2, just check these epochs to make sure some haven't slipped through the net by accident. looking for more catastrophic failures, or noise in baseline
        _, keeps = plot_AR(cuelocked.pick_types(eeg=True),
                           method='gesd',
                           zthreshold=1.5,
                           p_out=.1,
                           alpha=.05,
                           outlier_side=1)
        keeps = keeps.flatten()
        plt.close()

        discards = np.ones(len(cuelocked), dtype='bool')
        discards[keeps] = False
        cuelocked = cuelocked.drop(
            discards)  #first we'll drop trials with excessive noise in the EEG

        cuelocked = cuelocked[
            'DTcheck == 0 and clickresp == 1']  #the last trial of the session doesn't have a following trial!

        #now go through manually
        #        cuelocked.plot(n_channels=62, scalings = dict(eeg=200e-6), n_epochs=3)