Esempio n. 1
0
def main():
    # Parameters
    N_PARTICLES = 40  # Number of Particles
    N_LANDMARKS = 80  # Number of Landmarks
    PERCEPTUAL_RANGE = 120  # Landmark Detection Range
    MOTION_NOISE = np.array([1e-5, 1e-2, 1e-5, 1e-2, 1e-5,
                             1e-2])  # Motion Noise
    Qt_sim = np.diag([4, np.deg2rad(4)])**2  # Observation Noise

    # Create landmarks
    landmarks = []
    for i in range(N_LANDMARKS):
        rx = np.random.randint(10, 490)
        ry = np.random.randint(10, 490)
        landmarks.append((rx, ry))

    # Initialize environment
    window_name = "Fast-SLAM Demo"
    cv2.namedWindow(window_name)
    img = np.ones((500, 500, 3))
    init_pos = (250, 100, 0)
    car = KinematicModel(motion_noise=MOTION_NOISE)
    car.init_state(init_pos)
    car.v = 24
    car.w = np.deg2rad(10)
    path_odometry = [(init_pos)]

    # Create particle filter
    pf = ParticleFilter((car.x, car.y, car.yaw),
                        Qt_sim,
                        MOTION_NOISE,
                        psize=N_PARTICLES)
    while (True):
        ###################################
        # Simulate Controlling
        ###################################
        u = (car.v, car.w, car.dt)
        car.update()
        # TODO(Lab-4): Remove the comment after complete the motion model.
        #'''
        pos_odometry = motion_model(path_odometry[-1], u)
        path_odometry.append(pos_odometry)
        #'''
        print("\rState: " + car.state_str() + " | Neff:" + str(pf.Neff)[0:7],
              end="\t")

        ###################################
        # Simulate Observation
        ###################################
        rvec = np.array(landmarks) - np.array((car.x, car.y))
        dist = np.hypot(rvec[:, 0], rvec[:, 1])
        landmarks_id = np.where(
            dist < PERCEPTUAL_RANGE)[0]  # Detected Landmark ids
        landmarks_detect = np.array(landmarks)[
            landmarks_id]  # Detected Landmarks
        z = []
        for i in range(landmarks_detect.shape[0]):
            lm = landmarks_detect[i]
            r = dist[landmarks_id[i]]
            phi = np.arctan2(lm[1] - car.y, lm[0] - car.x) - car.yaw
            # Add Observation Noise
            r = r + np.random.randn() * Qt_sim[0, 0]**0.5
            phi = phi + np.random.randn() * Qt_sim[1, 1]**0.5
            phi = normalize_angle(phi)
            z.append((r, phi))

        ###################################
        # SLAM Algorithm
        ###################################
        # TODO(Lab-0): Remove the comment after complete the class.
        #'''
        pf.sample(u)
        pf.update(z, landmarks_id)
        pf.resample()
        #'''

        ###################################
        # Render Canvas
        ###################################
        img_ = img.copy()
        # Draw landmark
        for lm in landmarks:
            cv2.circle(img_, lm, 3, (0.1, 0.7, 0.1), 1)
        for i in range(landmarks_detect.shape[0]):
            lm = landmarks_detect[i]
            cv2.line(img_, (int(car.x), int(car.y)), (int(lm[0]), int(lm[1])),
                     (0, 1, 0), 1)
        # Draw path
        for i in range(N_PARTICLES):
            draw_path(img_, pf.particles[i].path, 100, (1, 0.7, 0.7))
        bid = np.argmax(np.array(pf.weights))
        draw_path(img_, pf.particles[bid].path, 1000,
                  (1, 0, 0))  # Draw Best Path
        draw_path(img_, path_odometry, 1000, (0, 0, 0))  # Draw Odometry Path
        # Draw particle pose
        for i in range(N_PARTICLES):
            cv2.circle(
                img_,
                (int(pf.particles[i].pos[0]), int(pf.particles[i].pos[1])), 2,
                (1, 0, 0), 1)
            # Draw maps of particles
            '''
            for lm in pf.particles[i].landmarks:
                lx = pf.particles[i].landmarks[lm]["mu"][0,0]
                ly = pf.particles[i].landmarks[lm]["mu"][1,0]
                cv2.circle(img_, (int(lx),int(ly)), 2, (1,0,0), 1)
            '''
        # Draw map of best particle
        for lid in pf.particles[bid].landmarks:
            mean = pf.particles[bid].landmarks[lid]["mu"].reshape(2)
            cov = pf.particles[bid].landmarks[lid]["sig"]
            draw_ellipse(img_, mean, cov, (0, 0, 1))

        cv2.circle(img_, (int(car.x), int(car.y)), PERCEPTUAL_RANGE, (0, 1, 0),
                   1)  # Draw Detect Range
        img_ = car.render(img_)  # Render Car
        img_ = cv2.flip(img_, 0)
        cv2.imshow(window_name, img_)

        ###################################
        # Keyboard
        ###################################
        k = cv2.waitKey(1)  #1
        if k == ord("w"):
            car.v += 4
        elif k == ord("s"):
            car.v += -4
        if k == ord("a"):
            car.w += 5
        elif k == ord("d"):
            car.w += -5
        elif k == ord("r"):
            car.init_state(init_pos)
            pf = ParticleFilter((car.x, car.y, car.yaw),
                                Qt_sim,
                                MOTION_NOISE,
                                psize=N_PARTICLES)
            path_odometry = [(init_pos)]
            print("Reset!!")
        if k == 27:
            print()
            break
Esempio n. 2
0
    img_ = car.render(img_)
    img_ = cv2.flip(img_, 0)

    #Collision
    p1, p2, p3, p4 = car.car_box
    l1 = Bresenham(p1[0], p2[0], p1[1], p2[1])
    l2 = Bresenham(p2[0], p3[0], p2[1], p3[1])
    l3 = Bresenham(p3[0], p4[0], p3[1], p4[1])
    l4 = Bresenham(p4[0], p1[0], p4[1], p1[1])
    check = l1 + l2 + l3 + l4
    collision = False
    for pts in check:
        if m[int(pts[1]), int(pts[0])] < 0.5:
            collision = True
            car.redo()
            car.v = -0.5 * car.v
            break

    #cv2.circle(img,(100,200),5,(0.5,0.5,0.5),3)
    cv2.imshow("Lidar Demo", img_)
    k = cv2.waitKey(1)
    if k == ord("a"):
        car.w += 5
    elif k == ord("d"):
        car.w -= 5
    elif k == ord("w"):
        car.v += 4
    elif k == ord("s"):
        car.v -= 4
    elif k == 27:
        print()
Esempio n. 3
0
while(True):
    car.update()
    #Collision
    p1,p2,p3,p4 = car.car_box
    l1 = Bresenham(p1[0], p2[0], p1[1], p2[1])
    l2 = Bresenham(p2[0], p3[0], p2[1], p3[1])
    l3 = Bresenham(p3[0], p4[0], p3[1], p4[1])
    l4 = Bresenham(p4[0], p1[0], p4[1], p1[1])
    check = l1+l2+l3+l4
    collision = False
    for pts in check:
        if m[int(pts[1]),int(pts[0])]<0.5:
            collision = True
            car.redo()
            car.v = -0.8*car.v
            print("gg")
            break
    if collision:
        collision_count = 1

    print("\rState: "+car.state_str(), "| Goal:", nav_pos, end="\t")
    pos = (car.x, car.y, car.yaw)
    sdata = lmodel.measure(pos)
    plist = EndPoint(pos, [sensor_size,-120,120], sdata)

    # Particle Filter
    pf.feed((car.v, car.w, car.dt), sdata)
    print(pf.neff)
    if pf.neff < particle_size/2:
        print("re")