Esempio n. 1
0
 def test_set_vocab(self):
     model_file = tempfile.NamedTemporaryFile()
     Word2Vec.train(model_file, self.training_data, size=100, window=5, negative=5, min_count=0, workers=4)
     w2v = Word2Vec(model_file.name)
     w2v.set_vocab(["誰", "私", "彼"])
     self.assertEqual(len(w2v.syn0norm_in_vocab), 3)
     model_file.close()
Esempio n. 2
0
    def test_most_similar_word1(self):
        model_file = tempfile.NamedTemporaryFile()
        Word2Vec.train(model_file, self.training_data, size=100, window=5, negative=5, min_count=0, workers=4)
        w2v = Word2Vec(model_file.name, topn=5)
        with self.assertRaisesRegex(AssertionError, r"^You need to call set_vocab first$"):
            _ = w2v.most_similar_word("人間")

        model_file.close()
Esempio n. 3
0
 def test_similarity(self):
     model_file = tempfile.NamedTemporaryFile()
     Word2Vec.train(model_file, self.training_data, size=100, window=5, negative=5, min_count=0, workers=4)
     w2v = Word2Vec(model_file.name, topn=5)
     sim = w2v.similarity("THIS_WORD_IS_NOT_IN_THE_TRAINING_DATA", "彼")
     self.assertAlmostEqual(sim, 0.0)
     sim = w2v.similarity("彼", "私")
     self.assertNotAlmostEquals(sim, 0.0)
     model_file.close()
Esempio n. 4
0
 def test_most_similar_word2(self):
     model_file = tempfile.NamedTemporaryFile()
     Word2Vec.train(model_file, self.training_data, size=100, window=5, negative=5, min_count=0, workers=4)
     w2v = Word2Vec(model_file.name, topn=5)
     w2v.set_vocab(["誰", "私", "彼"])
     most_sim_words = list(map(itemgetter(0), w2v.most_similar_word("人間")))
     self.assertEqual(len(most_sim_words), 3)
     self.assertIn("誰", most_sim_words)
     self.assertIn("私", most_sim_words)
     self.assertIn("彼", most_sim_words)
     model_file.close()
Esempio n. 5
0
 def _load_tgt_embedding(self):
     if self._should_load_tgt_embedding():
         return Word2Vec(model_path=self.setting.tgt_embedding)
     else:
         return None
Esempio n. 6
0
 def _load_src_embedding(self):
     if self._should_load_src_embedding():
          return Word2Vec(model_path=self.setting.src_embedding, topn=self.setting.src_embedding_topn)
     else:
         return None
Esempio n. 7
0
 def _load_src_embedding(self):
     return Word2Vec(model_path=self.setting.src_embedding, topn=self.setting.src_embedding_topn)
Esempio n. 8
0
 def test_train(self):
     model_file = tempfile.NamedTemporaryFile()
     Word2Vec.train(model_file, self.training_data, size=100, window=5, negative=5, min_count=0, workers=4)
     model_file.close()