Esempio n. 1
0
    def __init__(self, robot):
        super().__init__("shooter")
        self.robot = robot
        self.counter = 0  # used for updating the log
        self.feed_forward = 3.5  # default volts to give the flywheel to get close to setpoint, optional

        # motor controllers
        self.sparkmax_flywheel = rev.CANSparkMax(5, rev.MotorType.kBrushless)
        self.spark_hood = Talon(5)
        self.spark_feed = Talon(7)

        # encoders and PID controllers
        self.hood_encoder = Encoder(
            4,
            5)  # generic encoder - we'll have to install one on the 775 motor
        self.hood_encoder.setDistancePerPulse(1 / 1024)
        self.hood_controller = wpilib.controller.PIDController(Kp=0.005,
                                                               Ki=0,
                                                               Kd=0.0)
        self.hood_setpoint = 5
        self.hood_controller.setSetpoint(self.hood_setpoint)
        self.flywheel_encoder = self.sparkmax_flywheel.getEncoder(
        )  # built-in to the sparkmax/neo
        self.flywheel_controller = self.sparkmax_flywheel.getPIDController(
        )  # built-in PID controller in the sparkmax

        # limit switches, use is TBD
        self.limit_low = DigitalInput(6)
        self.limit_high = DigitalInput(7)
Esempio n. 2
0
    def __init__(self):
        self.clockwise_limit_switch = DigitalInput(
            TURRET_CLOCKWISE_LIMIT_SWITCH)
        self.counterclockwise_limit_switch = DigitalInput(
            TURRET_COUNTERCLOCKWISE_LIMIT_SWITCH)

        self.turn_motor = SparkMax(TURRET_TURN_MOTOR)
        self.turn_pid = PIDController(0.4, 0.001, 0.02)

        self.shoot_motor_1 = Falcon(TURRET_SHOOT_MOTORS[0])
        self.shoot_motor_2 = Falcon(TURRET_SHOOT_MOTORS[1])
        self.timer = Timer()

        self.limelight = Limelight()
Esempio n. 3
0
def init():
    """
    Initialize switch objects.
    """
    global gear_mech_switch

    gear_mech_switch = DigitalInput(robotmap.switches.gear_switch_channel)
Esempio n. 4
0
def init():
    global drive_left_encoder, drive_right_encoder, elevator_encoder, gyro, back_photosensor, side_photosensor, pdp
    drive_left_encoder = Encoder(6, 7)
    drive_left_encoder.setDistancePerPulse(_drive_encoder_scale())

    drive_right_encoder = Encoder(4, 5)
    drive_right_encoder.setDistancePerPulse(_drive_encoder_scale())

    elevator_encoder = Encoder(0, 1, True)
    elevator_encoder.setDistancePerPulse(_elevator_encoder_scale())

    gyro = Gyro(0)

    back_photosensor = DigitalInput(8)
    side_photosensor = DigitalInput(3)
    pdp = PowerDistributionPanel()
    def __init__(self, robot):
        super().__init__("Arm")
        self.robot = robot

        self.peakCurrentLimit = 30
        self.PeaKDuration = 50
        self.continuousLimit = 15

        motor = {}

        for name in self.robot.RobotMap.motorMap.motors:
            motor[name] = self.robot.Creator.createMotor(self.robot.RobotMap.motorMap.motors[name])

        self.motors = motor

        for name in self.motors:
            self.motors[name].setInverted(self.robot.RobotMap.motorMap.motors[name]['inverted'])
            # drive current limit
            self.motors[name].configPeakCurrentLimit(self.peakCurrentLimit, 10)
            self.motors[name].configPeakCurrentDuration(self.PeaKDuration, 10)
            self.motors[name].configContinuousCurrentLimit(self.continuousLimit, 10)
            self.motors[name].enableCurrentLimit(True)

        self.AEnc = Encoder(4, 5, False, Encoder.EncodingType.k4X)
        self.Zero = DigitalInput(6)

        self.kp = 0.00035
        self.ki = 0.00000000001
        self.kd = 0.0000001

        self.ArmPID = PID(self.kp, self.ki, self.kd)
Esempio n. 6
0
    def __init__(self):
        self.left_fly = CANTalon(motor_map.left_fly_motor)
        self.right_fly = CANTalon(motor_map.right_fly_motor)
        self.intake_main = CANTalon(motor_map.intake_main_motor)
        self.intake_mecanum = Talon(motor_map.intake_mecanum_motor)
        self.ball_limit = DigitalInput(sensor_map.ball_limit)

        self.intake_mecanum.setInverted(True)

        self.left_fly.reverseOutput(True)
        self.left_fly.enableBrakeMode(False)
        self.right_fly.enableBrakeMode(False)

        self.left_fly.setControlMode(CANTalon.ControlMode.Speed)
        self.right_fly.setControlMode(CANTalon.ControlMode.Speed)

        self.left_fly.setPID(sensor_map.shoot_P, sensor_map.shoot_I,
                             sensor_map.shoot_D, sensor_map.shoot_F,
                             sensor_map.shoot_Izone, sensor_map.shoot_RR,
                             sensor_map.shoot_Profile)
        self.right_fly.setPID(sensor_map.shoot_P, sensor_map.shoot_I,
                              sensor_map.shoot_D, sensor_map.shoot_F,
                              sensor_map.shoot_Izone, sensor_map.shoot_RR,
                              sensor_map.shoot_Profile)

        self.left_fly.setFeedbackDevice(CANTalon.FeedbackDevice.EncRising)
        self.right_fly.setFeedbackDevice(CANTalon.FeedbackDevice.EncRising)

        self.left_fly.configEncoderCodesPerRev(sensor_map.shoot_codes_per_rev)
        self.right_fly.configEncoderCodesPerRev(sensor_map.shoot_codes_per_rev)
Esempio n. 7
0
    def __init__(self, pin):
        self._value = 0

        # setup gpiozero to call increment on each when_activated
        encoder = DigitalInput(5)
        encoder.when_activated = self._increment
        encoder.when_deactivated = self._increment
Esempio n. 8
0
    def __init__(self, robot):
        super().__init__()

        # Capslock because its a constant?
        # Added to current angle to account for max angle recalibration
        # Motors
        self.arm_motors = Arm_Motors()
        #limit = Back_Switch()
        #self.back_switch = limit.back_switch

        # Encoders
        #self.l_arm_encoder = My_Arm_Encoder(0,1)
        self.l_arm_encoder = My_Arm_Encoder(9, 10)
        self.limit_switch = DigitalInput(8)
        #self.l_arm_encoder = wpilib.Encoder(0, 1)

        # By empirical test
        self.max_click_rate = 318.0

        # For getting encoder and accounting for limits and error
        # Arm starts in downward position
        self.arm_min_or_max = 0
        #XXX experimentally tested
        self.max_ticks = 434
        self.last_encoder = 0

        # For creating the profile (arm profile)
        self.x_axis_ticks = []
        # XXX angle max may be wrong
        self.angle_max = 150
        # Slope of profile
        self.max_accel = 0.536
        self.min_decel = 0.536

        self.time = 10
Esempio n. 9
0
 def __init__(self, channel, module=1, reverse=False):
     """
     Initializes the switch on some digital channel and module.
     Normally assumes switches are active low.
     """
     super().__init__()
     self.s = DigitalInput(module, channel)
     self.reverse = reverse
Esempio n. 10
0
    def __init__(self, robot):
        super().__init__("Climb")
        self.robot = robot

        self.winchMotor = Spark(robotmap.CLIMBWINCH)
        self.armUpSolenoid = Solenoid(robotmap.CLIMBARM_UP)
        self.armDownSolenoid = Solenoid(robotmap.CLIMBARM_DOWN)
        self.lockCloseSolenoid = Solenoid(robotmap.CLIMBCLAMPLOCK_CLOSE)
        self.lockOpenSolenoid = Solenoid(robotmap.CLIMBCLAMPLOCK_OPEN)
        self.hookLimit = DigitalInput(robotmap.LIMIT_SWITCH_HOOK)
Esempio n. 11
0
    def __init__(self):
        super().__init__()

        self._l_motor = Talon(constants.motor_intake_l)
        self._r_motor = Talon(constants.motor_intake_r)
        self._intake_piston = Solenoid(constants.solenoid_intake)
        self._photosensor = DigitalInput(constants.far_photosensor)

        self._left_pwm = 0
        self._right_pwm = 0
        self._open = False
Esempio n. 12
0
 def __init__(self, Robot):
     self._intake = Robot.intake
     self._drive = Robot.drive
     self._ramp = 0
     self._rampSpeed = 6
     self._LiftMotorLeft = SyncGroup(LIFT_MOTOR_LEFT_IDS, WPI_VictorSPX)
     self._LiftMotorRight = SyncGroup(LIFT_MOTOR_RIGHT_IDS, WPI_VictorSPX)
     self._LiftMotorLeft.setInverted(True)
     self._liftEncoder = Encoder(LIFT_ENCODER_A, LIFT_ENCODER_B, False,
                                 Encoder.EncodingType.k4X)
     self._liftEncoder.setDistancePerPulse(1)
     self._liftHallaffect = DigitalInput(HALL_DIO)
     self.zeroEncoder()
     self._liftPID = MiniPID(*LIFT_PID)
     self._liftPID.setOutputLimits(-0.45, 1)
     self.disableSpeedLimit = False
Esempio n. 13
0
    def __init__(self, operator: OperatorControl):
        self.operator = operator
        self.motor = WPI_VictorSPX(7)
        self.encoder = Encoder(0, 1, False, Encoder.EncodingType.k4X)
        self.encoder.setIndexSource(2)
        self.limit = DigitalInput(4)
        self.dashboard = NetworkTables.getTable("SmartDashboard")

        self.totalValues = 2048  # * self.encoder.getEncodingScale() - 1
        self.targetValue = 10
        self.realValue = 0
        self.allowedError = 10
        self.hole = 4
        self.holeOffset = 36 - 15
        self.maxspeed = .25
        self.minspeed = .1
        self.speedmult = 1/300
        self.speed = .1
Esempio n. 14
0
    def __init__(self, robot):
        Subsystem.__init__(self, 'Conveyor')

        self.robot = robot
        self.blaser = DigitalInput(3)

        motors = {}

        self.map = self.robot.botMap

        for name in self.map.motorMap.motors:
            motors[name] = self.robot.Creator.createMotor(
                self.map.motorMap.motors[name])

        self.cMotors = motors

        for name in self.cMotors:
            self.cMotors[name].setInverted(
                self.map.motorMap.motors[name]['inverted'])
            self.cMotors[name].setNeutralMode(ctre.NeutralMode.Coast)
Esempio n. 15
0
    def __init__(self):

        self.encoderUnit = 4096
        self.gearRatio = 93.33

        self.armSpeedMultiplier = 1

        self.armBottomLimit = 5
        self.armUpperLimit = 200

        self.resetValue = 0

        self.bottomLimitSwitch = DigitalInput(ArmLimitSwitch)

        self.armMotor1 = CANSparkMax(armBaseMotor1,MotorType.kBrushless)
        self.armMotor2 = CANSparkMax(armBaseMotor2,MotorType.kBrushless)

        self.armEncoder1 = self.armMotor1.getEncoder()
        self.armEncoder2 = self.armMotor2.getEncoder()

        self.currentArmPower = 0
        self.isOverride = False
Esempio n. 16
0
    def __init__(self):
        super().__init__()
        self._motor = SyncGroup(Talon, constants.motor_elevator)
        self._position_encoder = Encoder(*constants.encoder_elevator)
        self._photosensor = DigitalInput(constants.photosensor)
        self._stabilizer_piston = Solenoid(constants.solenoid_dropper)
        self._position_encoder.setDistancePerPulse(
            (PITCH_DIAMETER * math.pi) / TICKS_PER_REVOLUTION)

        # Trajectory controlling stuff
        self._follower = TrajectoryFollower()
        self.assure_tote = CircularBuffer(5)

        self.auto_stacking = True  # Do the dew

        self._tote_count = 0  # Keep track of totes!
        self._has_bin = False  # Do we have a bin on top?
        self._new_stack = True  # starting a new stack?
        self._tote_first = False  # Override bin first to grab totes before anything else
        self._should_drop = False  # Are we currently trying to get a bin ?

        self._close_stabilizer = True  # Opens the stabilizer manually
        self.force_stack = False  # manually actuates the elevator down and up

        self._follower.set_goal(Setpoints.BIN)  # Base state
        self._follower_thread = Thread(target=self.update_follower)
        self._follower_thread.start()

        self._auton = False

        quickdebug.add_tunables(Setpoints,
                                ["DROP", "STACK", "BIN", "TOTE", "FIRST_TOTE"])
        quickdebug.add_printables(
            self,
            [('position', self._position_encoder.getDistance),
             ('photosensor', self._photosensor.get), "has_bin", "tote_count",
             "tote_first", "at_goal", "has_game_piece", "auto_stacking"])
 def __init__(self):
     self.rightSensor = DigitalInput(0)
     self.leftSensor = DigitalInput(1)
Esempio n. 18
0
    def __init__(self):
        Events.__init__(self)
        self.elevator_motor = WPI_TalonSRX(5)
        self.elevator_bottom_switch = DigitalInput(9)

        self.carriage_motor = WPI_TalonSRX(3)
        self.carriage_bottom_switch = DigitalInput(1)
        self.carriage_top_switch = DigitalInput(2)

        self._create_events([
            LifterComponent.EVENTS.on_control_move,
            LifterComponent.EVENTS.on_manual_move
        ])

        self._is_reset = False

        # configure elevator motor and encoder

        self.elevator_motor.setNeutralMode(NeutralMode.Brake)

        self.elevator_motor.configSelectedFeedbackSensor(
            FeedbackDevice.CTRE_MagEncoder_Relative, 0,
            LifterComponent.TIMEOUT_MS)

        self.elevator_motor.setSensorPhase(True)
        self.elevator_motor.setInverted(True)

        self.elevator_motor.configNominalOutputForward(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.elevator_motor.configNominalOutputReverse(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.elevator_motor.configPeakOutputForward(LifterComponent.el_up,
                                                    LifterComponent.TIMEOUT_MS)
        self.elevator_motor.configPeakOutputReverse(LifterComponent.el_down,
                                                    LifterComponent.TIMEOUT_MS)

        self.elevator_motor.configNominalOutputForward(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.elevator_motor.configNominalOutputReverse(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.elevator_motor.configPeakOutputForward(LifterComponent.el_up,
                                                    LifterComponent.TIMEOUT_MS)
        self.elevator_motor.configPeakOutputReverse(LifterComponent.el_down,
                                                    LifterComponent.TIMEOUT_MS)

        self.elevator_motor.configAllowableClosedloopError(
            0, LifterComponent.ELEVATOR_ALLOWABLE_ERROR,
            LifterComponent.TIMEOUT_MS)

        self.elevator_motor.configForwardSoftLimitThreshold(
            int(LifterComponent.ELEVATOR_MAX_HEIGHT /
                LifterComponent.ELEVATOR_CONV_FACTOR), 0)

        self.elevator_motor.config_kF(0, LifterComponent.ELEVATOR_kF,
                                      LifterComponent.TIMEOUT_MS)
        self.elevator_motor.config_kP(0, LifterComponent.ELEVATOR_kP,
                                      LifterComponent.TIMEOUT_MS)
        self.elevator_motor.config_kI(0, LifterComponent.ELEVATOR_kI,
                                      LifterComponent.TIMEOUT_MS)
        self.elevator_motor.config_kD(0, LifterComponent.ELEVATOR_kD,
                                      LifterComponent.TIMEOUT_MS)

        # self.elevator_motor.setCurrentLimit()
        # self.elevator_motor.EnableCurrentLimit()
        # self.elevator_motor.configVoltageCompSaturation(4, LifterComponent.TIMEOUT_MS)

        # configure carriage motor and encoder

        self.carriage_motor.setNeutralMode(NeutralMode.Brake)

        self.carriage_motor.configSelectedFeedbackSensor(
            FeedbackDevice.CTRE_MagEncoder_Relative, 0,
            LifterComponent.TIMEOUT_MS)

        self.carriage_motor.setSensorPhase(True)
        self.carriage_motor.setInverted(True)

        self.carriage_motor.configNominalOutputForward(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.carriage_motor.configNominalOutputReverse(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.carriage_motor.configPeakOutputForward(LifterComponent.el_up,
                                                    LifterComponent.TIMEOUT_MS)
        self.carriage_motor.configPeakOutputReverse(LifterComponent.el_down,
                                                    LifterComponent.TIMEOUT_MS)

        self.carriage_motor.configNominalOutputForward(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.carriage_motor.configNominalOutputReverse(
            LifterComponent.ELEVATOR_ZERO, LifterComponent.TIMEOUT_MS)
        self.carriage_motor.configPeakOutputForward(LifterComponent.el_up,
                                                    LifterComponent.TIMEOUT_MS)
        self.carriage_motor.configPeakOutputReverse(LifterComponent.el_down,
                                                    LifterComponent.TIMEOUT_MS)

        self.carriage_motor.configAllowableClosedloopError(
            0, LifterComponent.CARRIAGE_ALLOWABLE_ERROR,
            LifterComponent.TIMEOUT_MS)

        self.carriage_motor.configForwardSoftLimitThreshold(
            int(LifterComponent.CARRIAGE_MAX_HEIGHT /
                LifterComponent.CARRIAGE_CONV_FACTOR), 0)

        self.carriage_motor.config_kF(0, LifterComponent.ELEVATOR_kF,
                                      LifterComponent.TIMEOUT_MS)
        self.carriage_motor.config_kP(0, LifterComponent.ELEVATOR_kP,
                                      LifterComponent.TIMEOUT_MS)
        self.carriage_motor.config_kI(0, LifterComponent.ELEVATOR_kI,
                                      LifterComponent.TIMEOUT_MS)
        self.carriage_motor.config_kD(0, LifterComponent.ELEVATOR_kD,
                                      LifterComponent.TIMEOUT_MS)
Esempio n. 19
0
    def initialize(self, robot):
        self.state = -1
        self.robot = robot
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)
        self.usingNeo = True

        self.frontRetractStart = 0
        self.wheelsStart = 0
        self.wheelsStart2 = 0

        if self.usingNeo:
            # NOTE: If using Spark Max in PWM mode to control Neo brushless
            # motors you MUST configure the speed controllers manually
            # using a USB cable and the Spark Max client software!
            self.frontLift: Spark = Spark(map.frontLiftPwm)
            self.backLift: Spark = Spark(map.backLiftPwm)
            self.frontLift.setInverted(False)
            self.backLift.setInverted(False)

        if map.robotId == map.astroV1:
            if not self.usingNeo:
                '''IDS AND DIRECTIONS FOR V1'''
                self.backLift = Talon(map.backLift)
                self.frontLift = Talon(map.frontLift)
                self.frontLift.setInverted(True)
                self.backLift.setInverted(True)

            self.wheelLeft = Victor(map.wheelLeft)
            self.wheelRight = Victor(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(True)

        else:
            if not self.usingNeo:
                '''IDS AND DIRECTIONS FOR V2'''
                self.backLift = Talon(map.frontLift)
                self.frontLift = Talon(map.backLift)
                self.frontLift.setInverted(False)
                self.backLift.setInverted(False)
                self.backLift.setNeutralMode(2)
                self.frontLift.setNeutralMode(2)

            self.wheelLeft = Talon(map.wheelLeft)
            self.wheelRight = Talon(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(False)

        if not self.usingNeo:
            for motor in [self.backLift, self.frontLift]:
                motor.clearStickyFaults(0)
                motor.setSafetyEnabled(False)
                motor.configContinuousCurrentLimit(30, 0)  #Amps per motor
                motor.enableCurrentLimit(True)
                motor.configVoltageCompSaturation(10,
                                                  0)  #Sets saturation value
                motor.enableVoltageCompensation(
                    True)  #Compensates for lower voltages

        for motor in [self.wheelLeft, self.wheelRight]:
            motor.clearStickyFaults(0)
            motor.setSafetyEnabled(False)
            motor.setNeutralMode(2)

        self.backSwitch = DigitalInput(map.backFloor)
        self.frontSwitch = DigitalInput(map.frontFloor)

        self.switchTopBack = DigitalInput(map.backTopSensor)
        self.switchTopFront = DigitalInput(map.frontTopSensor)

        self.switchBottomBack = DigitalInput(map.backBottomSensor)
        self.switchBottomFront = DigitalInput(map.frontBottomSensor)

        self.MAX_ANGLE = 2  #degrees
        self.TARGET_ANGLE = -1  #degrees
        self.climbSpeed = 0.9
        self.wheelSpeed = 0.9

        self.backHold = -0.10  #holds back stationary if extended ADJUST**
        self.frontHold = -0.10  #holds front stationary if extended

        self.kP = 0.35  #proportional gain for angle to power
        self.autoClimbIndicator = False
        '''
        NEGATIVE POWER TO ELEVATOR LIFTS ROBOT, LOWERS LEGS
        POSITIVE POWER TO ELEVATOR LOWERS ROBOT, LIFTS LEGS

        NEGATIVE POWER TO WHEELS MOVES ROBOT BACKWARDS
        POSITIVE POWER TO WHEELS MOVES ROBOT FORWARD
        '''

        self.started = False
Esempio n. 20
0
    def initialize(self, robot):
        self.robot = robot
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)

        if map.robotId == map.astroV1:
            '''IDS AND DIRECTIONS FOR V1'''
            self.backLift = Talon(map.backLift)
            self.frontLift = Talon(map.frontLift)
            self.frontLift.setInverted(True)
            self.backLift.setInverted(True)

            self.wheelLeft = Victor(map.wheelLeft)
            self.wheelRight = Victor(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(True)

        else:
            '''IDS AND DIRECTIONS FOR V2'''
            self.backLift = Talon(map.frontLift)
            self.frontLift = Talon(map.backLift)
            self.frontLift.setInverted(False)
            self.backLift.setInverted(False)

            self.wheelLeft = Talon(map.wheelLeft)
            self.wheelRight = Talon(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(False)

        for motor in [self.backLift, self.frontLift]:
            motor.clearStickyFaults(0)
            motor.setSafetyEnabled(False)
            motor.configContinuousCurrentLimit(30, 0)  #Amps per motor
            motor.enableCurrentLimit(True)
            motor.configVoltageCompSaturation(10, 0)  #Sets saturation value
            motor.enableVoltageCompensation(
                True)  #Compensates for lower voltages

        for motor in [self.wheelLeft, self.wheelRight]:
            motor.clearStickyFaults(0)
            motor.setSafetyEnabled(False)
            motor.setNeutralMode(2)

        self.backSwitch = DigitalInput(map.backBottomSensor)
        self.frontSwitch = DigitalInput(map.frontBottomSensor)

        self.upSwitch = DigitalInput(map.upSensor)

        self.MAX_ANGLE = 2  #degrees
        self.TARGET_ANGLE = 0  #degrees
        self.climbSpeed = 0.5
        self.wheelSpeed = 0.5

        self.backHold = -0.15  #holds back stationary if extended ADJUST**
        self.frontHold = -0.1  #holds front stationary if extended

        self.kP = 0.4  #proportional gain for angle to power
        '''
        NEGATIVE POWER TO ELEVATOR LIFTS ROBOT, LOWERS LEGS
        POSITIVE POWER TO ELEVATOR LOWERS ROBOT, LIFTS LEGS

        NEGATIVE POWER TO WHEELS MOVES ROBOT BACKWARDS
        POSITIVE POWER TO WHEELS MOVES ROBOT FORWARD
        '''

        self.started = False