Esempio n. 1
0
    def test_get_radolan_grid_equality(self):
        # create radolan projection osr object
        scale = (1. + np.sin(np.radians(60.))) / (1. + np.sin(np.radians(90.)))
        dwd_string = ('+proj=stere +lat_0=90 +lat_ts=90 +lon_0=10 '
                      '+k={0:10.8f} +x_0=0 +y_0=0 +a=6370040 +b=6370040 '
                      '+to_meter=1000 +no_defs'.format(scale))
        proj_stereo = georef.proj4_to_osr(dwd_string)

        # create wgs84 projection osr object
        proj_wgs = osr.SpatialReference()
        proj_wgs.ImportFromEPSG(4326)

        # transform radolan polar stereographic projection to wgs84 and wgs84
        # to polar stereographic
        # using osr transformation routines
        radolan_grid_ll = georef.reproject(self.radolan_grid_xy,
                                           projection_source=proj_stereo,
                                           projection_target=proj_wgs)
        radolan_grid_xy = georef.reproject(self.radolan_grid_ll,
                                           projection_source=proj_wgs,
                                           projection_target=proj_stereo)

        # check source and target arrays for equality
        self.assertTrue(np.allclose(radolan_grid_ll, self.radolan_grid_ll))
        self.assertTrue(np.allclose(radolan_grid_xy, self.radolan_grid_xy))
Esempio n. 2
0
    def test_get_radolan_grid_equality(self):
        # create radolan projection osr object
        scale = (1. + np.sin(np.radians(60.))) / (1. + np.sin(np.radians(90.)))
        dwd_string = ('+proj=stere +lat_0=90 +lat_ts=90 +lon_0=10 '
                      '+k={0:10.8f} +x_0=0 +y_0=0 +a=6370040 +b=6370040 '
                      '+to_meter=1000 +no_defs'.format(scale))
        proj_stereo = georef.proj4_to_osr(dwd_string)

        # create wgs84 projection osr object
        proj_wgs = osr.SpatialReference()
        proj_wgs.ImportFromEPSG(4326)

        # transform radolan polar stereographic projection to wgs84 and wgs84
        # to polar stereographic
        # using osr transformation routines
        radolan_grid_ll = georef.reproject(self.radolan_grid_xy,
                                           projection_source=proj_stereo,
                                           projection_target=proj_wgs)
        radolan_grid_xy = georef.reproject(self.radolan_grid_ll,
                                           projection_source=proj_wgs,
                                           projection_target=proj_stereo)

        # check source and target arrays for equality
        self.assertTrue(np.allclose(radolan_grid_ll, self.radolan_grid_ll))
        self.assertTrue(np.allclose(radolan_grid_xy, self.radolan_grid_xy))

        radolan_grid_xy = georef.get_radolan_grid(900, 900)
        radolan_grid_ll = georef.get_radolan_grid(900, 900, wgs84=True)

        # check source and target arrays for equality
        self.assertTrue(np.allclose(radolan_grid_ll, self.radolan_grid_ll))
        self.assertTrue(np.allclose(radolan_grid_xy, self.radolan_grid_xy))
Esempio n. 3
0
 def test_reproject(self):
     proj_gk = osr.SpatialReference()
     proj_gk.ImportFromEPSG(31466)
     proj_wgs84 = osr.SpatialReference()
     proj_wgs84.ImportFromEPSG(4326)
     x, y = georef.reproject(7., 53., projection_source=proj_wgs84, projection_target=proj_gk)
     lon, lat = georef.reproject(x, y, projection_source=proj_gk, projection_target=proj_wgs84)
     self.assertAlmostEqual(lon, 7.0)
     self.assertAlmostEqual(lat, 53.0)
Esempio n. 4
0
 def test_reproject(self):
     proj_gk = osr.SpatialReference()
     proj_gk.ImportFromEPSG(31466)
     proj_wgs84 = osr.SpatialReference()
     proj_wgs84.ImportFromEPSG(4326)
     x, y = georef.reproject(7., 53., projection_source=proj_wgs84,
                             projection_target=proj_gk)
     lon, lat = georef.reproject(x, y, projection_source=proj_gk,
                                 projection_target=proj_wgs84)
     self.assertAlmostEqual(lon, 7.0)
     self.assertAlmostEqual(lat, 53.0)
Esempio n. 5
0
    def test_geoid_to_ellipsoid(self):
        coords = np.array([[5.0, 50.0, 300.0], [2, 54, 300], [50, 5, 300]])
        geoid = georef.get_earth_projection("geoid")
        ellipsoid = georef.get_earth_projection("ellipsoid")
        newcoords = georef.reproject(
            coords, projection_source=geoid, projection_target=ellipsoid
        )
        assert np.any(np.not_equal(coords[..., 2], newcoords[..., 2]))

        newcoords = georef.reproject(
            newcoords, projection_source=ellipsoid, projection_target=geoid
        )
        np.testing.assert_allclose(coords, newcoords)
Esempio n. 6
0
def ex_coord():

    pvol = io.read_OPERA_hdf5(os.path.dirname(__file__) + '/' + 'data/20130429043000.rad.bewid.pvol.dbzh.scan1.hdf')

    # Count the number of dataset

    ntilt = 1
    for i in range(100):
        try:
            pvol["dataset%d/what" % ntilt]
            ntilt += 1
        except Exception:
            ntilt -= 1
            break

    nrays = int(pvol["dataset1/where"]["nrays"])
    nbins = int(pvol["dataset1/where"]["nbins"])
    rscale = int(pvol["dataset1/where"]["rscale"])
    coord = np.empty((ntilt, nrays, nbins, 3))
    for t in range(ntilt):
        elangle = pvol["dataset%d/where" % (t + 1)]["elangle"]
        coord[t, ...] = georef.sweep_centroids(nrays, rscale, nbins, elangle)
    ascale = math.pi / nrays
    sitecoords = (pvol["where"]["lon"], pvol["where"]["lat"], pvol["where"]["height"])
    proj_radar = georef.create_osr("aeqd", lat_0=pvol["where"]["lat"], lon_0=pvol["where"]["lon"])
    radius = georef.get_earth_radius(pvol["where"]["lat"], proj_radar)

    lon, lat, height = georef.polar2lonlatalt_n(coord[..., 0], np.degrees(coord[..., 1]), coord[..., 2], sitecoords,
                                                re=radius, ke=4. / 3.)

    x, y = georef.reproject(lon, lat, projection_target=proj_radar)

    test = x[0, 90, 0:960:60]
    print(test)
Esempio n. 7
0
def make_3d_grid(sitecoords,
                 proj,
                 maxrange,
                 maxalt,
                 horiz_res,
                 vert_res,
                 minalt=0.):
    """Generate Cartesian coordinates for a regular 3-D grid based on \
    radar specs.

    Parameters
    ----------
    sitecoords : tuple
        Radar location coordinates in lon, lat
    proj : object
        GDAL OSR Spatial Reference Object describing projection
    maxrange : float
        maximum radar range (same unit as SRS defined by ``proj``,
        typically meters)
    maxalt : float
        maximum altitude to which the 3-d grid should extent (meters)
    horiz_res : float
        horizontal resolution of the 3-d grid (same unit as
        SRS defined by ``proj``, typically meters)
    vert_res : float
        vertical resolution of the 3-d grid (meters)

    Keyword Arguments
    -----------------
    minalt : float
        minimum altitude to which the 3-d grid should extent (meters)

    Returns
    -------
    output : :class:`numpy:numpy.ndarray`, tuple
        float array of shape (num grid points, 3), a tuple of
        3 representing the grid shape
    """
    center = georef.reproject(sitecoords[0],
                              sitecoords[1],
                              projection_target=proj)
    # minz = sitecoords[2]
    llx = center[0] - maxrange
    lly = center[1] - maxrange
    x = np.arange(llx, llx + 2 * maxrange + horiz_res, horiz_res)
    y = np.arange(lly, lly + 2 * maxrange + horiz_res, horiz_res)
    z = np.arange(minalt, maxalt + vert_res, vert_res)
    xyz = util.gridaspoints(z, y, x)
    shape = (len(z), len(y), len(x))
    return xyz, shape
Esempio n. 8
0
    def test_reproject(self):
        proj_gk = osr.SpatialReference()
        proj_gk.ImportFromEPSG(31466)
        proj_wgs84 = osr.SpatialReference()
        proj_wgs84.ImportFromEPSG(4326)
        x, y, z = georef.reproject(7.,
                                   53.,
                                   0.,
                                   projection_source=proj_wgs84,
                                   projection_target=proj_gk)
        lon, lat = georef.reproject(x,
                                    y,
                                    projection_source=proj_gk,
                                    projection_target=proj_wgs84)
        self.assertAlmostEqual(lon, 7.0)
        self.assertAlmostEqual(lat, 53.0)

        lonlat = georef.reproject(np.stack((x, y), axis=-1),
                                  projection_source=proj_gk,
                                  projection_target=proj_wgs84)
        self.assertAlmostEqual(lonlat[0], 7.0)
        self.assertAlmostEqual(lonlat[1], 53.0)

        self.assertRaises(
            TypeError, lambda: georef.reproject(np.stack(
                (x, y, x, y), axis=-1)))

        lon, lat, alt = georef.reproject(x,
                                         y,
                                         z,
                                         projection_source=proj_gk,
                                         projection_target=proj_wgs84)
        self.assertAlmostEqual(lon, 7., places=5)
        self.assertAlmostEqual(lat, 53., places=3)
        self.assertAlmostEqual(alt, 0., places=3)

        self.assertRaises(TypeError, lambda: georef.reproject(x, y, x, y))
        self.assertRaises(
            TypeError,
            lambda: georef.reproject([np.arange(10)], [np.arange(11)]))
        self.assertRaises(
            TypeError, lambda: georef.reproject([np.arange(
                10)], [np.arange(10)], [np.arange(11)]))
Esempio n. 9
0
    def setUp(self):
        f = 'gpm/2A-CS-151E24S154E30S.GPM.Ku.V7-20170308.20141206-S095002-E095137.004383.V05A.HDF5'  # noqa
        gpm_file = util.get_wradlib_data_file(f)
        pr_data = read_generic_hdf5(gpm_file)
        pr_lon = pr_data['NS/Longitude']['data']
        pr_lat = pr_data['NS/Latitude']['data']
        zenith = pr_data['NS/PRE/localZenithAngle']['data']
        wgs84 = georef.get_default_projection()
        a = wgs84.GetSemiMajor()
        b = wgs84.GetSemiMinor()
        rad = georef.proj4_to_osr(
            ('+proj=aeqd +lon_0={lon:f} ' +
             '+lat_0={lat:f} +a={a:f} +b={b:f}' + '').format(lon=pr_lon[68, 0],
                                                             lat=pr_lat[68, 0],
                                                             a=a,
                                                             b=b))
        pr_x, pr_y = georef.reproject(pr_lon,
                                      pr_lat,
                                      projection_source=wgs84,
                                      projection_target=rad)
        self.re = georef.get_earth_radius(pr_lat[68, 0], wgs84) * 4. / 3.
        self.pr_xy = np.dstack((pr_x, pr_y))
        self.alpha = zenith
        self.zt = 407000.
        self.dr = 125.
        self.bw_pr = 0.71
        self.nbin = 176
        self.nray = pr_lon.shape[1]

        self.pr_out = np.array([[[[-58533.78453556, 124660.60390174],
                                  [-58501.33048429, 124677.58873852]],
                                 [[-53702.13393133, 127251.83656509],
                                  [-53670.98686161, 127268.11882882]]],
                                [[[-56444.00788528, 120205.5374491],
                                  [-56411.55421163, 120222.52300741]],
                                 [[-51612.2360682, 122796.78620764],
                                  [-51581.08938314, 122813.06920719]]]])
        self.r_out = np.array(
            [0., 125., 250., 375., 500., 625., 750., 875., 1000., 1125.])
        self.z_out = np.array([
            0., 119.51255112, 239.02510224, 358.53765337, 478.05020449,
            597.56275561, 717.07530673, 836.58785786, 956.10040898,
            1075.6129601
        ])
Esempio n. 10
0
def ex_georef():
    # --------------------------------------------------------------------------
    # EXAMPLE 1: Full workflow for georeferencing radar data

    # 1st step: generate the centroid coordinates of the radar bins
    #   define the polar coordinates and the site coordinates in lat/lon
    r = np.arange(1, 129) * 1000
    az = np.linspace(0, 360, 361)[0:-1]
    #   drs:  51.12527778 ; fbg: 47.87444444 ; tur: 48.58611111 ; muc: 48.3372222
    #   drs:  13.76972222 ; fbg: 8.005 ; tur: 9.783888889 ; muc: 11.61277778
    sitecoords = (9.7839, 48.5861)

    #   these are the polgon vertices of the radar bins
    polygons = georef.polar2polyvert(r, az, sitecoords)

    #   these are the corresponding centroids
    cent_lon, cent_lat = georef.polar2centroids(r, az, sitecoords)

    # plot the vertices and the centroids in one plot
    fig = pl.figure(figsize=(8, 8))
    ax = fig.add_subplot(111)
    polycoll = mpl.collections.PolyCollection(polygons, closed=True, facecolors='None')
    ax.add_collection(polycoll, autolim=True)
    ax.plot(cent_lon, cent_lat, 'r+')
    ax.axis('tight')
    pl.title('Zoom in to compare polygons and centroids.')
    pl.show()

    # 2nd step: reproject the centroid coordinates to Gauss-Krueger Zone 3
    #   by using the EPSG-Number 31467
    # use it for projecting the centroids to Gauss-Krueger 3
    proj_gk3 = georef.epsg_to_osr(31467)
    x, y = georef.reproject(cent_lon, cent_lat, projection_targe=proj_gk3)

    # export the projected centroid coordinates
    # f = open('centroids.tab', 'w')
    f = 'centroids.tab'
    # f.write('x\ty\n')
    np.savetxt(f, np.hstack((x.reshape((-1, 1)), y.reshape((-1, 1)))), fmt='%.2f', header='x\ty', delimiter='\t')
    # f.close()

    print('Exit.')
Esempio n. 11
0
    def setUp(self):
        f = 'gpm/2A-CS-151E24S154E30S.GPM.Ku.V7-20170308.20141206-S095002-E095137.004383.V05A.HDF5'  # noqa
        gpm_file = util.get_wradlib_data_file(f)
        pr_data = read_generic_hdf5(gpm_file)
        pr_lon = pr_data['NS/Longitude']['data']
        pr_lat = pr_data['NS/Latitude']['data']
        zenith = pr_data['NS/PRE/localZenithAngle']['data']
        wgs84 = georef.get_default_projection()
        a = wgs84.GetSemiMajor()
        b = wgs84.GetSemiMinor()
        rad = georef.proj4_to_osr(('+proj=aeqd +lon_0={lon:f} ' +
                                   '+lat_0={lat:f} +a={a:f} +b={b:f}' +
                                   '').format(lon=pr_lon[68, 0],
                                              lat=pr_lat[68, 0],
                                              a=a, b=b))
        pr_x, pr_y = georef.reproject(pr_lon, pr_lat,
                                      projection_source=wgs84,
                                      projection_target=rad)
        self.re = georef.get_earth_radius(pr_lat[68, 0], wgs84) * 4. / 3.
        self.pr_xy = np.dstack((pr_x, pr_y))
        self.alpha = zenith
        self.zt = 407000.
        self.dr = 125.
        self.bw_pr = 0.71
        self.nbin = 176
        self.nray = pr_lon.shape[1]

        self.pr_out = np.array([[[[-58533.78453556, 124660.60390174],
                                  [-58501.33048429, 124677.58873852]],
                                 [[-53702.13393133, 127251.83656509],
                                  [-53670.98686161, 127268.11882882]]],
                                [[[-56444.00788528, 120205.5374491],
                                  [-56411.55421163, 120222.52300741]],
                                 [[-51612.2360682, 122796.78620764],
                                  [-51581.08938314, 122813.06920719]]]])
        self.r_out = np.array([0., 125., 250., 375., 500., 625., 750., 875.,
                               1000., 1125.])
        self.z_out = np.array([0., 119.51255112, 239.02510224, 358.53765337,
                               478.05020449, 597.56275561, 717.07530673,
                               836.58785786, 956.10040898, 1075.6129601])
Esempio n. 12
0
    def test_reproject(self):
        proj_gk = osr.SpatialReference()
        proj_gk.ImportFromEPSG(31466)
        proj_wgs84 = osr.SpatialReference()
        proj_wgs84.ImportFromEPSG(4326)
        x, y, z = georef.reproject(7., 53., 0., projection_source=proj_wgs84,
                                   projection_target=proj_gk)
        lon, lat = georef.reproject(x, y, projection_source=proj_gk,
                                    projection_target=proj_wgs84)
        self.assertAlmostEqual(lon, 7.0)
        self.assertAlmostEqual(lat, 53.0)

        lonlat = georef.reproject(np.stack((x, y), axis=-1),
                                  projection_source=proj_gk,
                                  projection_target=proj_wgs84)
        self.assertAlmostEqual(lonlat[0], 7.0)
        self.assertAlmostEqual(lonlat[1], 53.0)

        self.assertRaises(TypeError,
                          lambda: georef.reproject(np.stack((x, y, x, y),
                                                            axis=-1)))

        lon, lat, alt = georef.reproject(x, y, z, projection_source=proj_gk,
                                         projection_target=proj_wgs84)
        self.assertAlmostEqual(lon, 7., places=5)
        self.assertAlmostEqual(lat, 53., places=3)
        self.assertAlmostEqual(alt, 0., places=3)

        self.assertRaises(TypeError,
                          lambda: georef.reproject(x, y, x, y))
        self.assertRaises(TypeError,
                          lambda: georef.reproject([np.arange(10)],
                                                   [np.arange(11)]))
        self.assertRaises(TypeError,
                          lambda: georef.reproject([np.arange(10)],
                                                   [np.arange(10)],
                                                   [np.arange(11)]))
Esempio n. 13
0
def get_raster_extent(dataset, geo=False, window=True):
    """Get the coordinates of the 4 corners of the raster dataset

    Parameters
    ----------
    dataset : gdal.Dataset
        raster image with georeferencing (GeoTransform at least)
    geo : bool
        True to get geographical coordinates
    window : bool
        True to get the window containing the corners

    Returns
    -------
    extent : :class:`numpy:numpy.ndarray`
        corner coordinates [ul,ll,lr,ur] or
        window extent [xmin, xmax, ymin, ymax]
    """

    x_size = dataset.RasterXSize
    y_size = dataset.RasterYSize
    geotrans = dataset.GetGeoTransform()
    xmin = geotrans[0]
    ymax = geotrans[3]
    xmax = geotrans[0] + geotrans[1] * x_size
    ymin = geotrans[3] + geotrans[5] * y_size

    extent = np.array([[xmin, ymax], [xmin, ymin], [xmax, ymin], [xmax, ymax]])

    if geo:
        projection = read_gdal_projection(dataset)
        extent = georef.reproject(extent, projection_source=projection)

    if window:
        x = extent[:, 0]
        y = extent[:, 1]
        extent = np.array([x.min(), x.max(), y.min(), y.max()])

    return extent
Esempio n. 14
0
    def setUp(self):
        # read the radar volume scan
        filename = 'hdf5/20130429043000.rad.bewid.pvol.dbzh.scan1.hdf'
        filename = util.get_wradlib_data_file(filename)
        pvol = io.read_opera_hdf5(filename)
        nrays = int(pvol["dataset1/where"]["nrays"])
        nbins = int(pvol["dataset1/where"]["nbins"])
        val = pvol["dataset%d/data1/data" % (1)]
        gain = float(pvol["dataset1/data1/what"]["gain"])
        offset = float(pvol["dataset1/data1/what"]["offset"])
        self.val = val * gain + offset
        self.rscale = int(pvol["dataset1/where"]["rscale"])
        elangle = pvol["dataset%d/where" % (1)]["elangle"]
        coord = georef.sweep_centroids(nrays, self.rscale, nbins, elangle)
        sitecoords = (pvol["where"]["lon"], pvol["where"]["lat"],
                      pvol["where"]["height"])

        coord, proj_radar = georef.spherical_to_xyz(coord[..., 0],
                                                    coord[..., 1],
                                                    coord[..., 2],
                                                    sitecoords,
                                                    re=6370040.,
                                                    ke=4. / 3.)
        filename = 'hdf5/SAFNWC_MSG3_CT___201304290415_BEL_________.h5'
        filename = util.get_wradlib_data_file(filename)
        sat_gdal = io.read_safnwc(filename)
        val_sat = georef.read_gdal_values(sat_gdal)
        coord_sat = georef.read_gdal_coordinates(sat_gdal)
        proj_sat = georef.read_gdal_projection(sat_gdal)
        coord_sat = georef.reproject(coord_sat,
                                     projection_source=proj_sat,
                                     projection_target=proj_radar)
        coord_radar = coord
        interp = ipol.Nearest(coord_sat[..., 0:2].reshape(-1, 2),
                              coord_radar[..., 0:2].reshape(-1, 2))
        self.val_sat = interp(val_sat.ravel()).reshape(val.shape)
        timelag = 9 * 60
        wind = 10
        self.error = np.absolute(timelag) * wind
Esempio n. 15
0
    def setUp(self):
        global skip
        # setup test grid and catchment
        lon = 7.071664
        lat = 50.730521
        r = np.array(range(50, 100 * 1000 + 50, 100))
        a = np.array(range(0, 360, 1))
        rays = a.shape[0]
        bins = r.shape[0]
        # create polar grid polygon vertices in lat,lon
        radar_ll = georef.polar2polyvert(r, a, (lon, lat))

        # create polar grid centroids in lat,lon
        rlon, rlat = georef.polar2centroids(r, a, (lon, lat))
        radar_llc = np.dstack((rlon, rlat))

        # setup OSR objects
        self.proj_gk = osr.SpatialReference()
        self.proj_gk.ImportFromEPSG(31466)
        self.proj_ll = osr.SpatialReference()
        self.proj_ll.ImportFromEPSG(4326)

        # project ll grids to GK2
        self.radar_gk = georef.reproject(radar_ll,
                                         projection_source=self.proj_ll,
                                         projection_target=self.proj_gk)
        self.radar_gkc = georef.reproject(radar_llc,
                                          projection_source=self.proj_ll,
                                          projection_target=self.proj_gk)

        # reshape
        self.radar_gk.shape = (rays, bins, 5, 2)
        self.radar_gkc.shape = (rays, bins, 2)

        self.box0 = np.array([[2600000., 5630000.], [2600000., 5630100.],
                              [2600100., 5630100.], [2600100., 5630000.],
                              [2600000., 5630000.]])

        self.box1 = np.array([[2600100., 5630000.], [2600100., 5630100.],
                              [2600200., 5630100.], [2600200., 5630000.],
                              [2600100., 5630000.]])

        self.data = np.array([self.box0, self.box1])

        # create catchment bounding box
        buffer = 5000.
        bbox = zonalstats.get_bbox(self.data[..., 0], self.data[..., 1])
        bbox = dict(left=bbox['left'] - buffer,
                    right=bbox['right'] + buffer,
                    bottom=bbox['bottom'] - buffer,
                    top=bbox['top'] + buffer)

        mask, shape = zonalstats.mask_from_bbox(self.radar_gkc[..., 0],
                                                self.radar_gkc[..., 1],
                                                bbox,
                                                polar=True)

        self.radar_gkc = self.radar_gkc[mask, :]
        self.radar_gk = self.radar_gk[mask]

        self.zdpoly = zonalstats.ZonalDataPoly(self.radar_gk,
                                               self.data,
                                               srs=self.proj_gk)
        # self.zdpoly.dump_vector('test_zdpoly')
        self.zdpoint = zonalstats.ZonalDataPoint(self.radar_gkc,
                                                 self.data,
                                                 srs=self.proj_gk)
        # self.zdpoint.dump_vector('test_zdpoint')

        isec_poly0 = np.array([
            np.array([[2600000., 5630000.], [2600000., 5630057.83273596],
                      [2600018.65014816, 5630000.], [2600000., 5630000.]]),
            np.array([[2600000., 5630057.83273596], [2600000., 5630100.],
                      [2600091.80406488,
                       5630100.], [2600100., 5630074.58501104],
                      [2600100., 5630000.], [2600018.65014816, 5630000.],
                      [2600000., 5630057.83273596]]),
            np.array([[2600091.80406488, 5630100.], [2600100., 5630100.],
                      [2600100., 5630074.58501104],
                      [2600091.80406488, 5630100.]])
        ])
        isec_poly1 = np.array([
            np.array([[2600100., 5630000.], [2600100., 5630074.58501104],
                      [2600124.05249566, 5630000.], [2600100., 5630000.]]),
            np.array([[2600100., 5630074.58501104], [2600100., 5630100.],
                      [2600197.20644071,
                       5630100.], [2600200., 5630091.33737992],
                      [2600200., 5630000.], [2600124.05249566, 5630000.],
                      [2600100., 5630074.58501104]]),
            np.array([[2600197.20644071, 5630100.], [2600200., 5630100.],
                      [2600200., 5630091.33737992],
                      [2600197.20644071, 5630100.]])
        ])

        isec_point0 = np.array([[2600062.31245173, 5630031.20266055]])
        isec_point1 = np.array([[2600157.8352244, 5630061.85098382]])

        self.isec_poly = np.array([isec_poly0, isec_poly1])
        self.isec_point = np.array([isec_point0, isec_point1])
Esempio n. 16
0
    def setUp(self):
        global skip
        # setup test grid and catchment
        lon = 7.071664
        lat = 50.730521
        r = np.array(range(50, 100 * 1000 + 50, 100))
        a = np.array(range(0, 360, 1))
        rays = a.shape[0]
        bins = r.shape[0]

        # setup OSR objects
        self.proj_gk = osr.SpatialReference()
        self.proj_gk.ImportFromEPSG(31466)
        self.proj_ll = osr.SpatialReference()
        self.proj_ll.ImportFromEPSG(4326)

        # create polar grid polygon vertices in lat,lon
        radar_ll = georef.spherical_to_polyvert(r, a, 0, (lon, lat),
                                                proj=self.proj_ll)[..., 0:2]

        # create polar grid centroids in lat,lon
        coords = georef.spherical_to_centroids(r, a, 0, (lon, lat),
                                               proj=self.proj_ll)

        radar_llc = coords[..., 0:2]

        # project ll grids to GK2
        self.radar_gk = georef.reproject(radar_ll,
                                         projection_source=self.proj_ll,
                                         projection_target=self.proj_gk)
        self.radar_gkc = georef.reproject(radar_llc,
                                          projection_source=self.proj_ll,
                                          projection_target=self.proj_gk)

        # reshape
        self.radar_gk.shape = (rays, bins, 5, 2)
        self.radar_gkc.shape = (rays, bins, 2)

        self.box0 = np.array([[2600000., 5630000.], [2600000., 5630100.],
                              [2600100., 5630100.], [2600100., 5630000.],
                              [2600000., 5630000.]])

        self.box1 = np.array([[2600100., 5630000.], [2600100., 5630100.],
                              [2600200., 5630100.], [2600200., 5630000.],
                              [2600100., 5630000.]])

        self.data = np.array([self.box0, self.box1])

        # create catchment bounding box
        buffer = 5000.
        bbox = zonalstats.get_bbox(self.data[..., 0], self.data[..., 1])
        bbox = dict(left=bbox['left'] - buffer, right=bbox['right'] + buffer,
                    bottom=bbox['bottom'] - buffer, top=bbox['top'] + buffer)

        mask, shape = zonalstats.mask_from_bbox(self.radar_gkc[..., 0],
                                                self.radar_gkc[..., 1],
                                                bbox,
                                                polar=True)

        self.radar_gkc = self.radar_gkc[mask, :]
        self.radar_gk = self.radar_gk[mask]

        self.zdpoly = zonalstats.ZonalDataPoly(self.radar_gk, self.data,
                                               srs=self.proj_gk)
        # self.zdpoly.dump_vector('test_zdpoly')
        self.zdpoint = zonalstats.ZonalDataPoint(self.radar_gkc, self.data,
                                                 srs=self.proj_gk)
        # self.zdpoint.dump_vector('test_zdpoint')

        isec_poly0 = np.array([np.array([[2600000., 5630000.],
                                         [2600000., 5630100.],
                                         [2600009.61157242, 5630100.],
                                         [2600041.77844048, 5630000.],
                                         [2600000., 5630000.]]),
                               np.array([[2600009.61157242, 5630100.],
                                         [2600100., 5630100.],
                                         [2600100., 5630000.],
                                         [2600041.77844048, 5630000.],
                                         [2600009.61157242, 5630100.]]),
                               np.array([[2600091.80406488, 5630100.],
                                         [2600100., 5630100.],
                                         [2600100., 5630074.58501104],
                                         [2600091.80406488, 5630100.]])])
        isec_poly1 = np.array([np.array([[2600100., 5630000.],
                                         [2600100., 5630100.],
                                         [2600114.66582085, 5630100.],
                                         [2600146.83254704, 5630000.],
                                         [2600100., 5630000.]]),
                               np.array([[2600114.66582085, 5630100.],
                                         [2600200., 5630100.],
                                         [2600200., 5630000.],
                                         [2600146.83254704, 5630000.],
                                         [2600114.66582085, 5630100.]]),
                               np.array([[2600197.20644071, 5630100.],
                                         [2600200., 5630100.],
                                         [2600200., 5630091.33737992],
                                         [2600197.20644071, 5630100.]])])

        isec_point0 = np.array([[2600077.2899581, 5630056.0874306]])
        isec_point1 = np.array([[2600172.498418, 5630086.7127034]])

        self.isec_poly = np.array([isec_poly0, isec_poly1])
        self.isec_point = np.array([isec_point0, isec_point1])
Esempio n. 17
0
    def setUp(self):
        global skip
        # setup test grid and catchment
        lon = 7.071664
        lat = 50.730521
        r = np.array(range(50, 100 * 1000 + 50, 100))
        a = np.array(range(0, 360, 1))
        rays = a.shape[0]
        bins = r.shape[0]

        # setup OSR objects
        self.proj_gk = osr.SpatialReference()
        self.proj_gk.ImportFromEPSG(31466)
        self.proj_ll = osr.SpatialReference()
        self.proj_ll.ImportFromEPSG(4326)

        # create polar grid polygon vertices in lat,lon
        radar_ll = georef.spherical_to_polyvert(r,
                                                a,
                                                0, (lon, lat),
                                                proj=self.proj_ll)[..., 0:2]

        # create polar grid centroids in lat,lon
        coords = georef.spherical_to_centroids(r,
                                               a,
                                               0, (lon, lat),
                                               proj=self.proj_ll)

        radar_llc = coords[..., 0:2]

        # project ll grids to GK2
        self.radar_gk = georef.reproject(radar_ll,
                                         projection_source=self.proj_ll,
                                         projection_target=self.proj_gk)
        self.radar_gkc = georef.reproject(radar_llc,
                                          projection_source=self.proj_ll,
                                          projection_target=self.proj_gk)

        # reshape
        self.radar_gk.shape = (rays, bins, 5, 2)
        self.radar_gkc.shape = (rays, bins, 2)

        self.box0 = np.array([[2600000., 5630000.], [2600000., 5630100.],
                              [2600100., 5630100.], [2600100., 5630000.],
                              [2600000., 5630000.]])

        self.box1 = np.array([[2600100., 5630000.], [2600100., 5630100.],
                              [2600200., 5630100.], [2600200., 5630000.],
                              [2600100., 5630000.]])

        self.data = np.array([self.box0, self.box1])

        # create catchment bounding box
        buffer = 5000.
        bbox = zonalstats.get_bbox(self.data[..., 0], self.data[..., 1])
        bbox = dict(left=bbox['left'] - buffer,
                    right=bbox['right'] + buffer,
                    bottom=bbox['bottom'] - buffer,
                    top=bbox['top'] + buffer)

        mask, shape = zonalstats.mask_from_bbox(self.radar_gkc[..., 0],
                                                self.radar_gkc[..., 1],
                                                bbox,
                                                polar=True)

        self.radar_gkc = self.radar_gkc[mask, :]
        self.radar_gk = self.radar_gk[mask]

        self.zdpoly = zonalstats.ZonalDataPoly(self.radar_gk,
                                               self.data,
                                               srs=self.proj_gk)
        # self.zdpoly.dump_vector('test_zdpoly')
        self.zdpoint = zonalstats.ZonalDataPoint(self.radar_gkc,
                                                 self.data,
                                                 srs=self.proj_gk)
        # self.zdpoint.dump_vector('test_zdpoint')

        isec_poly0 = np.array([
            np.array([[2600000., 5630000.], [2600000., 5630100.],
                      [2600009.61157242, 5630100.],
                      [2600041.77844048, 5630000.], [2600000., 5630000.]]),
            np.array([[2600009.61157242, 5630100.], [2600100., 5630100.],
                      [2600100., 5630000.], [2600041.77844048, 5630000.],
                      [2600009.61157242, 5630100.]]),
            np.array([[2600091.80406488, 5630100.], [2600100., 5630100.],
                      [2600100., 5630074.58501104],
                      [2600091.80406488, 5630100.]])
        ])
        isec_poly1 = np.array([
            np.array([[2600100., 5630000.], [2600100., 5630100.],
                      [2600114.66582085, 5630100.],
                      [2600146.83254704, 5630000.], [2600100., 5630000.]]),
            np.array([[2600114.66582085, 5630100.], [2600200., 5630100.],
                      [2600200., 5630000.], [2600146.83254704, 5630000.],
                      [2600114.66582085, 5630100.]]),
            np.array([[2600197.20644071, 5630100.], [2600200., 5630100.],
                      [2600200., 5630091.33737992],
                      [2600197.20644071, 5630100.]])
        ])

        isec_point0 = np.array([[2600077.2899581, 5630056.0874306]])
        isec_point1 = np.array([[2600172.498418, 5630086.7127034]])

        self.isec_poly = np.array([isec_poly0, isec_poly1])
        self.isec_point = np.array([isec_point0, isec_point1])
Esempio n. 18
0
class TestFilterCloudtype:
    if has_data:
        # read the radar volume scan
        filename = "hdf5/20130429043000.rad.bewid.pvol.dbzh.scan1.hdf"
        filename = util.get_wradlib_data_file(filename)
        pvol = io.read_opera_hdf5(filename)
        nrays = int(pvol["dataset1/where"]["nrays"])
        nbins = int(pvol["dataset1/where"]["nbins"])
        val = pvol["dataset%d/data1/data" % (1)]
        gain = float(pvol["dataset1/data1/what"]["gain"])
        offset = float(pvol["dataset1/data1/what"]["offset"])
        val = val * gain + offset
        rscale = int(pvol["dataset1/where"]["rscale"])
        elangle = pvol["dataset%d/where" % (1)]["elangle"]
        coord = georef.sweep_centroids(nrays, rscale, nbins, elangle)
        sitecoords = (
            pvol["where"]["lon"],
            pvol["where"]["lat"],
            pvol["where"]["height"],
        )

        coord, proj_radar = georef.spherical_to_xyz(
            coord[..., 0],
            coord[..., 1],
            coord[..., 2],
            sitecoords,
            re=6370040.0,
            ke=4.0 / 3.0,
        )
        filename = "hdf5/SAFNWC_MSG3_CT___201304290415_BEL_________.h5"
        filename = util.get_wradlib_data_file(filename)
        sat_gdal = io.read_safnwc(filename)
        val_sat = georef.read_gdal_values(sat_gdal)
        coord_sat = georef.read_gdal_coordinates(sat_gdal)
        proj_sat = georef.read_gdal_projection(sat_gdal)
        coord_sat = georef.reproject(coord_sat,
                                     projection_source=proj_sat,
                                     projection_target=proj_radar)
        coord_radar = coord
        interp = ipol.Nearest(coord_sat[..., 0:2].reshape(-1, 2),
                              coord_radar[..., 0:2].reshape(-1, 2))
        val_sat = interp(val_sat.ravel()).reshape(val.shape)
        timelag = 9 * 60
        wind = 10
        error = np.absolute(timelag) * wind

    @requires_data
    def test_filter_cloudtype(self):
        nonmet = clutter.filter_cloudtype(self.val,
                                          self.val_sat,
                                          scale=self.rscale,
                                          smoothing=self.error)
        nclutter = np.sum(nonmet)
        assert nclutter == 8141
        nonmet = clutter.filter_cloudtype(self.val,
                                          self.val_sat,
                                          scale=self.rscale,
                                          smoothing=self.error,
                                          low=True)
        nclutter = np.sum(nonmet)
        assert nclutter == 17856
Esempio n. 19
0
class TestZonalData:
    global skip
    # setup test grid and catchment
    lon = 7.071664
    lat = 50.730521
    r = np.array(range(50, 100 * 1000 + 50, 100))
    a = np.array(range(0, 360, 1))
    rays = a.shape[0]
    bins = r.shape[0]

    # setup OSR objects
    proj_gk = osr.SpatialReference()
    proj_gk.ImportFromEPSG(31466)
    proj_ll = osr.SpatialReference()
    proj_ll.ImportFromEPSG(4326)

    # create polar grid polygon vertices in lat,lon
    radar_ll = georef.spherical_to_polyvert(r, a, 0, (lon, lat),
                                            proj=proj_ll)[..., 0:2]

    # create polar grid centroids in lat,lon
    coords = georef.spherical_to_centroids(r, a, 0, (lon, lat), proj=proj_ll)

    radar_llc = coords[..., 0:2]

    # project ll grids to GK2
    radar_gk = georef.reproject(radar_ll,
                                projection_source=proj_ll,
                                projection_target=proj_gk)
    radar_gkc = georef.reproject(radar_llc,
                                 projection_source=proj_ll,
                                 projection_target=proj_gk)

    # reshape
    radar_gk.shape = (rays, bins, 5, 2)
    radar_gkc.shape = (rays, bins, 2)

    box0 = np.array([
        [2600000.0, 5630000.0],
        [2600000.0, 5630100.0],
        [2600100.0, 5630100.0],
        [2600100.0, 5630000.0],
        [2600000.0, 5630000.0],
    ])

    box1 = np.array([
        [2600100.0, 5630000.0],
        [2600100.0, 5630100.0],
        [2600200.0, 5630100.0],
        [2600200.0, 5630000.0],
        [2600100.0, 5630000.0],
    ])

    data = np.array([box0, box1])

    # create catchment bounding box
    buffer = 5000.0
    bbox = zonalstats.get_bbox(data[..., 0], data[..., 1])
    bbox = dict(
        left=bbox["left"] - buffer,
        right=bbox["right"] + buffer,
        bottom=bbox["bottom"] - buffer,
        top=bbox["top"] + buffer,
    )

    mask, shape = zonalstats.mask_from_bbox(radar_gkc[..., 0],
                                            radar_gkc[..., 1],
                                            bbox,
                                            polar=True)

    radar_gkc = radar_gkc[mask, :]
    radar_gk = radar_gk[mask]

    zdpoly = zonalstats.ZonalDataPoly(radar_gk, data, srs=proj_gk)
    # zdpoly.dump_vector('test_zdpoly')
    zdpoint = zonalstats.ZonalDataPoint(radar_gkc, data, srs=proj_gk)
    # zdpoint.dump_vector('test_zdpoint')

    isec_poly0 = np.array(
        [
            np.array([
                [2600000.0, 5630000.0],
                [2600000.0, 5630100.0],
                [2600009.61157242, 5630100.0],
                [2600041.77844048, 5630000.0],
                [2600000.0, 5630000.0],
            ]),
            np.array([
                [2600009.61157242, 5630100.0],
                [2600100.0, 5630100.0],
                [2600100.0, 5630000.0],
                [2600041.77844048, 5630000.0],
                [2600009.61157242, 5630100.0],
            ]),
            np.array([
                [2600091.80406488, 5630100.0],
                [2600100.0, 5630100.0],
                [2600100.0, 5630074.58501104],
                [2600091.80406488, 5630100.0],
            ]),
        ],
        dtype=object,
    )
    isec_poly1 = np.array(
        [
            np.array([
                [2600100.0, 5630000.0],
                [2600100.0, 5630100.0],
                [2600114.66582085, 5630100.0],
                [2600146.83254704, 5630000.0],
                [2600100.0, 5630000.0],
            ]),
            np.array([
                [2600114.66582085, 5630100.0],
                [2600200.0, 5630100.0],
                [2600200.0, 5630000.0],
                [2600146.83254704, 5630000.0],
                [2600114.66582085, 5630100.0],
            ]),
            np.array([
                [2600197.20644071, 5630100.0],
                [2600200.0, 5630100.0],
                [2600200.0, 5630091.33737992],
                [2600197.20644071, 5630100.0],
            ]),
        ],
        dtype=object,
    )

    isec_point0 = np.array([[2600077.2899581, 5630056.0874306]])
    isec_point1 = np.array([[2600172.498418, 5630086.7127034]])

    isec_poly = np.array([isec_poly0, isec_poly1])
    isec_point = np.array([isec_point0, isec_point1])

    def test_srs(self):
        assert self.zdpoly.srs == self.proj_gk
        assert self.zdpoint.srs == self.proj_gk

    def test_isecs(self):
        # need to iterate over nested array for correct testing
        for i, ival in enumerate(self.zdpoly.isecs):
            for k, kval in enumerate(ival):
                np.testing.assert_allclose(kval.astype(float),
                                           self.isec_poly[i, k],
                                           rtol=1e-6)

        np.testing.assert_allclose(self.zdpoint.isecs.astype(float),
                                   self.isec_point,
                                   rtol=1e-6)

    def test_get_isec(self):
        for i in [0, 1]:
            for k, arr in enumerate(self.zdpoly.get_isec(i)):
                np.testing.assert_allclose(arr.astype(float),
                                           self.isec_poly[i, k],
                                           rtol=1e-6)
            np.testing.assert_allclose(self.zdpoint.get_isec(i).astype(float),
                                       self.isec_point[i],
                                       rtol=1e-6)

    def test_get_source_index(self):
        np.testing.assert_array_equal(self.zdpoly.get_source_index(0),
                                      np.array([2254, 2255]))
        np.testing.assert_array_equal(self.zdpoly.get_source_index(1),
                                      np.array([2255, 2256]))
        np.testing.assert_array_equal(self.zdpoint.get_source_index(0),
                                      np.array([2255]))
        np.testing.assert_array_equal(self.zdpoint.get_source_index(1),
                                      np.array([2256]))
Esempio n. 20
0
def ex_clutter_cloud():
    # read the radar volume scan
    path = os.path.dirname(__file__) + '/'
    pvol = io.read_OPERA_hdf5(
        path + 'data/20130429043000.rad.bewid.pvol.dbzh.scan1.hdf')

    # Count the number of dataset

    ntilt = 1
    for i in range(100):
        try:
            pvol["dataset%d/what" % ntilt]
            ntilt += 1
        except Exception:
            ntilt -= 1
            break

    # Construct radar values

    nrays = int(pvol["dataset1/where"]["nrays"])
    nbins = int(pvol["dataset1/where"]["nbins"])
    val = np.empty((ntilt, nrays, nbins))
    for t in range(ntilt):
        val[t, ...] = pvol["dataset%d/data1/data" % (t + 1)]
    gain = float(pvol["dataset1/data1/what"]["gain"])
    offset = float(pvol["dataset1/data1/what"]["offset"])
    val = val * gain + offset

    # Construct radar coordinates

    rscale = int(pvol["dataset1/where"]["rscale"])
    coord = np.empty((ntilt, nrays, nbins, 3))
    for t in range(ntilt):
        elangle = pvol["dataset%d/where" % (t + 1)]["elangle"]
        coord[t, ...] = georef.sweep_centroids(nrays, rscale, nbins, elangle)
    ascale = math.pi / nrays
    sitecoords = (pvol["where"]["lon"], pvol["where"]["lat"],
                  pvol["where"]["height"])
    proj_radar = georef.create_osr("aeqd",
                                   lat_0=pvol["where"]["lat"],
                                   lon_0=pvol["where"]["lon"])
    coord[..., 0], coord[..., 1], coord[..., 2] = georef.polar2lonlatalt_n(
        coord[..., 0],
        np.degrees(coord[..., 1]),
        coord[..., 2],
        sitecoords,
        re=6370040.,
        ke=4. / 3.)
    coord = georef.reproject(coord, projection_target=proj_radar)

    # Construct collocated satellite data

    sat_gdal = io.read_safnwc(
        path + 'data/SAFNWC_MSG3_CT___201304290415_BEL_________.h5')
    val_sat = georef.read_gdal_values(sat_gdal)
    coord_sat = georef.read_gdal_coordinates(sat_gdal)
    proj_sat = georef.read_gdal_projection(sat_gdal)
    coord_sat = georef.reproject(coord_sat,
                                 projection_source=proj_sat,
                                 projection_target=proj_radar)
    coord_radar = coord
    interp = ipol.Nearest(coord_sat[..., 0:2].reshape(-1, 2),
                          coord_radar[..., 0:2].reshape(-1, 2))
    val_sat = interp(val_sat.ravel()).reshape(val.shape)

    # Estimate localisation errors

    timelag = 9 * 60
    wind = 10
    error = np.absolute(timelag) * wind

    # Identify clutter based on collocated cloudtype
    clutter = cl.filter_cloudtype(val[0, ...],
                                  val_sat[0, ...],
                                  scale=rscale,
                                  smoothing=error)
    # visualize the result
    plt.figure()
    vis.plot_ppi(clutter)
    plt.suptitle('clutter')
    plt.savefig('clutter_cloud_example_1.png')
    plt.figure()
    vis.plot_ppi(val_sat[0, ...])
    plt.suptitle('satellite')
    plt.savefig('clutter_cloud_example_2.png')
    plt.show()
Esempio n. 21
0
    def setUp(self):
        global skip
        # setup test grid and catchment
        lon = 7.071664
        lat = 50.730521
        r = np.array(range(50, 100 * 1000 + 50, 100))
        a = np.array(range(0, 360, 1))
        rays = a.shape[0]
        bins = r.shape[0]
        # create polar grid polygon vertices in lat,lon
        radar_ll = georef.polar2polyvert(r, a, (lon, lat))

        # create polar grid centroids in lat,lon
        rlon, rlat = georef.polar2centroids(r, a, (lon, lat))
        radar_llc = np.dstack((rlon, rlat))

        # setup OSR objects
        self.proj_gk = osr.SpatialReference()
        self.proj_gk.ImportFromEPSG(31466)
        self.proj_ll = osr.SpatialReference()
        self.proj_ll.ImportFromEPSG(4326)

        # project ll grids to GK2
        self.radar_gk = georef.reproject(radar_ll, projection_source=self.proj_ll,
                                         projection_target=self.proj_gk)
        self.radar_gkc = georef.reproject(radar_llc, projection_source=self.proj_ll,
                                          projection_target=self.proj_gk)

        # reshape
        self.radar_gk.shape = (rays, bins, 5, 2)
        self.radar_gkc.shape = (rays, bins, 2)

        self.box0 = np.array([[2600000., 5630000.], [2600000., 5630100.],
                              [2600100., 5630100.], [2600100., 5630000.],
                              [2600000., 5630000.]])

        self.box1 = np.array([[2600100., 5630000.], [2600100., 5630100.],
                              [2600200., 5630100.], [2600200., 5630000.],
                              [2600100., 5630000.]])

        self.data = np.array([self.box0, self.box1])

        # create catchment bounding box
        buffer = 5000.
        bbox = zonalstats.get_bbox(self.data[..., 0], self.data[..., 1])
        bbox = dict(left=bbox['left'] - buffer, right=bbox['right'] + buffer,
                    bottom=bbox['bottom'] - buffer, top=bbox['top'] + buffer)

        mask, shape = zonalstats.mask_from_bbox(self.radar_gkc[..., 0],
                                                self.radar_gkc[..., 1],
                                                bbox,
                                                polar=True)

        self.radar_gkc = self.radar_gkc[mask, :]
        self.radar_gk = self.radar_gk[mask]

        self.zdpoly = zonalstats.ZonalDataPoly(self.radar_gk, self.data, srs=self.proj_gk)
        # self.zdpoly.dump_vector('test_zdpoly')
        self.zdpoint = zonalstats.ZonalDataPoint(self.radar_gkc, self.data, srs=self.proj_gk)
        # self.zdpoint.dump_vector('test_zdpoint')

        isec_poly0 = np.array([np.array([[2600000., 5630000.],
                                         [2600000., 5630057.83273596],
                                         [2600018.65014816, 5630000.],
                                         [2600000., 5630000.]]),
                               np.array([[2600000., 5630057.83273596],
                                         [2600000., 5630100.],
                                         [2600091.80406488, 5630100.],
                                         [2600100., 5630074.58501104],
                                         [2600100., 5630000.],
                                         [2600018.65014816, 5630000.],
                                         [2600000., 5630057.83273596]]),
                               np.array([[2600091.80406488, 5630100.],
                                         [2600100., 5630100.],
                                         [2600100., 5630074.58501104],
                                         [2600091.80406488, 5630100.]])])
        isec_poly1 = np.array([np.array([[2600100., 5630000.],
                                         [2600100., 5630074.58501104],
                                         [2600124.05249566, 5630000.],
                                         [2600100., 5630000.]]),
                               np.array([[2600100., 5630074.58501104],
                                         [2600100., 5630100.],
                                         [2600197.20644071, 5630100.],
                                         [2600200., 5630091.33737992],
                                         [2600200., 5630000.],
                                         [2600124.05249566, 5630000.],
                                         [2600100., 5630074.58501104]]),
                               np.array([[2600197.20644071, 5630100.],
                                         [2600200., 5630100.],
                                         [2600200., 5630091.33737992],
                                         [2600197.20644071, 5630100.]])])

        isec_point0 = np.array([[2600062.31245173, 5630031.20266055]])
        isec_point1 = np.array([[2600157.8352244, 5630061.85098382]])

        self.isec_poly = np.array([isec_poly0, isec_poly1])
        self.isec_point = np.array([isec_point0, isec_point1])
Esempio n. 22
0
    def test_reproject(self):
        proj_gk = osr.SpatialReference()
        proj_gk.ImportFromEPSG(31466)
        proj_wgs84 = osr.SpatialReference()
        proj_wgs84.ImportFromEPSG(4326)
        x, y, z = georef.reproject(
            7.0, 53.0, 0.0, projection_source=proj_wgs84, projection_target=proj_gk
        )
        lon, lat = georef.reproject(
            x, y, projection_source=proj_gk, projection_target=proj_wgs84
        )
        assert pytest.approx(lon) == 7.0
        assert pytest.approx(lat) == 53.0

        lonlat = georef.reproject(
            np.stack((x, y), axis=-1),
            projection_source=proj_gk,
            projection_target=proj_wgs84,
        )
        assert pytest.approx(lonlat[0]) == 7.0
        assert pytest.approx(lonlat[1]) == 53.0

        with pytest.raises(TypeError):
            georef.reproject(np.stack((x, y, x, y), axis=-1))

        lon, lat, alt = georef.reproject(
            x, y, z, projection_source=proj_gk, projection_target=proj_wgs84
        )
        assert pytest.approx(lon, abs=1e-5) == 7.0
        assert pytest.approx(lat, abs=1e-3) == 53.0
        assert pytest.approx(alt, abs=1e-3) == 0.0

        with pytest.raises(TypeError):
            georef.reproject(x, y, x, y)
        with pytest.raises(TypeError):
            georef.reproject([np.arange(10)], [np.arange(11)])
        with pytest.raises(TypeError):
            georef.reproject([np.arange(10)], [np.arange(10)], [np.arange(11)])
Esempio n. 23
0
class TestSatellite:
    f = "gpm/2A-CS-151E24S154E30S.GPM.Ku.V7-20170308.20141206-S095002-E095137.004383.V05A.HDF5"  # noqa
    gpm_file = util.get_wradlib_data_file(f)
    pr_data = wradlib.io.read_generic_hdf5(gpm_file)
    pr_lon = pr_data["NS/Longitude"]["data"]
    pr_lat = pr_data["NS/Latitude"]["data"]
    zenith = pr_data["NS/PRE/localZenithAngle"]["data"]
    wgs84 = georef.get_default_projection()
    a = wgs84.GetSemiMajor()
    b = wgs84.GetSemiMinor()
    rad = georef.proj4_to_osr(
        ("+proj=aeqd +lon_0={lon:f} " + "+lat_0={lat:f} +a={a:f} +b={b:f}" + "").format(
            lon=pr_lon[68, 0], lat=pr_lat[68, 0], a=a, b=b
        )
    )
    pr_x, pr_y = georef.reproject(
        pr_lon, pr_lat, projection_source=wgs84, projection_target=rad
    )
    re = georef.get_earth_radius(pr_lat[68, 0], wgs84) * 4.0 / 3.0
    pr_xy = np.dstack((pr_x, pr_y))
    alpha = zenith
    zt = 407000.0
    dr = 125.0
    bw_pr = 0.71
    nbin = 176
    nray = pr_lon.shape[1]

    pr_out = np.array(
        [
            [
                [
                    [-58533.78453556, 124660.60390174],
                    [-58501.33048429, 124677.58873852],
                ],
                [
                    [-53702.13393133, 127251.83656509],
                    [-53670.98686161, 127268.11882882],
                ],
            ],
            [
                [
                    [-56444.00788528, 120205.5374491],
                    [-56411.55421163, 120222.52300741],
                ],
                [
                    [-51612.2360682, 122796.78620764],
                    [-51581.08938314, 122813.06920719],
                ],
            ],
        ]
    )
    r_out = np.array(
        [0.0, 125.0, 250.0, 375.0, 500.0, 625.0, 750.0, 875.0, 1000.0, 1125.0]
    )
    z_out = np.array(
        [
            0.0,
            119.51255112,
            239.02510224,
            358.53765337,
            478.05020449,
            597.56275561,
            717.07530673,
            836.58785786,
            956.10040898,
            1075.6129601,
        ]
    )

    def test_correct_parallax(self):
        xy, r, z = georef.correct_parallax(self.pr_xy, self.nbin, self.dr, self.alpha)
        pr_out = np.array(
            [
                [
                    [
                        [-16582.50734831, 35678.47219358],
                        [-16547.94607589, 35696.40777009],
                    ],
                    [
                        [-11742.02016667, 38252.32622057],
                        [-11708.84553319, 38269.52268457],
                    ],
                ],
                [
                    [
                        [-14508.62005182, 31215.98689653],
                        [-14474.05905935, 31233.92329553],
                    ],
                    [
                        [-9667.99183645, 33789.86576047],
                        [-9634.81750708, 33807.06305397],
                    ],
                ],
            ]
        )
        r_out = np.array(
            [0.0, 125.0, 250.0, 375.0, 500.0, 625.0, 750.0, 875.0, 1000.0, 1125.0]
        )
        z_out = np.array(
            [
                0.0,
                118.78164113,
                237.56328225,
                356.34492338,
                475.1265645,
                593.90820563,
                712.68984675,
                831.47148788,
                950.25312901,
                1069.03477013,
            ]
        )

        np.testing.assert_allclose(xy[60:62, 0:2, 0:2, :], pr_out, rtol=1e-12)
        np.testing.assert_allclose(r[0:10], r_out, rtol=1e-12)
        np.testing.assert_allclose(z[0, 0, 0:10], z_out, rtol=1e-10)

    def test_dist_from_orbit(self):
        beta = abs(-17.04 + np.arange(self.nray) * self.bw_pr)
        xy, r, z = georef.correct_parallax(self.pr_xy, self.nbin, self.dr, self.alpha)
        dists = georef.dist_from_orbit(self.zt, self.alpha, beta, r, re=self.re)
        bd = np.array(
            [
                426553.58667772,
                426553.50342119,
                426553.49658156,
                426553.51025979,
                426553.43461609,
                426553.42515894,
                426553.46559985,
                426553.37020786,
                426553.44407286,
                426553.42173696,
            ]
        )
        sd = np.array(
            [
                426553.58667772,
                424895.63462839,
                423322.25176564,
                421825.47714885,
                420405.9414294,
                419062.44208923,
                417796.86827302,
                416606.91482435,
                415490.82582636,
                414444.11587979,
            ]
        )
        np.testing.assert_allclose(dists[0:10, 0, 0], bd, rtol=1e-12)
        np.testing.assert_allclose(dists[0, 0:10, 0], sd, rtol=1e-12)
Esempio n. 24
0
def plot_scan_strategy(
    ranges,
    elevs,
    sitecoords,
    beamwidth=1.0,
    vert_res=500.0,
    maxalt=10000.0,
    range_res=None,
    maxrange=None,
    units="m",
    terrain=None,
    az=0.0,
    cg=False,
    ax=111,
    cmap="tab10",
):
    """Plot the vertical scanning strategy.

    Parameters
    ----------
    ranges : sequence of floats
        array of ranges
    elevs : sequence of floats
        elevation angles
    sitecoords : sequence of floats
        radar site coordinates (longitude, latitude, altitude)
    beamwidth : float
        3dB width of the radar beam, defaults to 1.0 deg.
    vert_res : float
        Vertical resolution in [m].
    maxalt : float
        Maximum altitude in [m].
    range_res : float
        Horizontal resolution in [m].
    maxrange : float
        Maximum range in [m].
    units : str
        Units to plot in, can be 'm' or 'km'. Defaults to 'm'.
    terrain : bool | :class:`numpy:numpy.ndarray`
        If True, downloads srtm data and add orography for given `az`.
    az : float
        Used to specify azimuth for terrain plots.
    cg : bool
        If True, plot in curvelinear grid, defaults to False (cartesian grid).
    ax : :class:`matplotlib:matplotlib.axes.Axes` | matplotlib grid definition
        If matplotlib Axes object is given, the scan strategy will be plotted into this
        axes object.
        If matplotlib grid definition is given (nrows/ncols/plotnumber),
        axis are created in the specified place.
        Defaults to '111', only one subplot/axis.
    cmap : str
        matplotlib colormap string.

    Returns
    -------
    ax : :class:`matplotlib:matplotlib.axes.Axes` | matplotlib toolkit axisartist Axes object
        matplotlib Axes or curvelinear Axes (r-theta-grid) depending on keyword argument `cg`.
    """

    if units == "m":
        scale = 1.0
    elif units == "km":
        scale = 1000.0
    else:
        raise ValueError(
            f"wradlib: unknown value for keyword argument units={units}")

    az = np.array([az])

    if maxrange is None:
        maxrange = ranges.max()

    xyz, rad = georef.spherical_to_xyz(ranges,
                                       az,
                                       elevs,
                                       sitecoords,
                                       squeeze=True)

    add_title = ""
    if terrain is True:
        add_title += f" - Azimuth {az[0]}°"
        ll = georef.reproject(xyz, projection_source=rad)
        # (down-)load srtm data
        ds = io.get_srtm(
            [
                ll[..., 0].min(), ll[..., 0].max(), ll[..., 1].min(),
                ll[..., 1].max()
            ],
            download={},
        )
        rastervalues, rastercoords, proj = georef.extract_raster_dataset(
            ds, nodata=-32768.0)
        # map rastervalues to polar grid points
        terrain = ipol.cart_to_irregular_spline(rastercoords,
                                                rastervalues,
                                                ll[-1, ..., :2],
                                                order=3,
                                                prefilter=False)
    if ax == 111:
        fig = pl.figure(figsize=(16, 8))
    else:
        fig = pl.gcf()

    legend2 = {}

    if cg is True:
        ax, caax, paax = create_cg(fig=fig, subplot=ax, rot=0, scale=1)
        # for nice plotting we assume earth_radius = 6370000 m
        er = 6370000
        # calculate beam_height and arc_distance for ke=1
        # means line of sight
        ade = georef.bin_distance(ranges, 0, sitecoords[2], re=er, ke=1.0)
        nn0 = np.zeros_like(ranges)
        ecp = nn0 + er
        # theta (arc_distance sector angle)
        thetap = -np.degrees(ade / er) + 90.0

        # zero degree elevation with standard refraction
        (bes, ) = paax.plot(thetap,
                            ecp,
                            "-k",
                            linewidth=3,
                            label="_MSL",
                            zorder=3)
        legend2["MSL"] = bes

        if terrain is not None:
            paax.fill_between(thetap,
                              ecp.min() - 2500,
                              ecp + terrain,
                              color="0.75",
                              zorder=2)

        # axes layout
        ax.set_xlim(0, np.max(ade))
        ax.set_ylim([ecp.min() - maxalt / 5, ecp.max() + maxalt])
        caax.grid(True, axis="x")
        ax.grid(True, axis="y")
        ax.axis["top"].toggle(all=False)
        gh = ax.get_grid_helper()
        yrange = maxalt + maxalt / 5
        nbins = ((yrange // vert_res) * 2 + 1) // np.sqrt(2)
        gh.grid_finder.grid_locator2._nbins = nbins
    else:
        ax = fig.add_subplot(ax)
        paax = ax
        caax = ax
        if terrain is not None:
            paax.fill_between(ranges, 0, terrain, color="0.75", zorder=2)
        ax.set_xlim(0.0, maxrange)
        ax.set_ylim(0.0, maxalt)
        ax.grid()

    # axes ticks and formatting
    if range_res is not None:
        xloc = range_res
        caax.xaxis.set_major_locator(MultipleLocator(xloc))
    else:
        caax.xaxis.set_major_locator(MaxNLocator())
    yloc = vert_res
    caax.yaxis.set_major_locator(MultipleLocator(yloc))

    import functools

    hform = functools.partial(_height_formatter, cg=cg, scale=scale)
    rform = functools.partial(_range_formatter, scale=scale)
    caax.yaxis.set_major_formatter(FuncFormatter(hform))
    caax.xaxis.set_major_formatter(FuncFormatter(rform))

    # color management
    from cycler import cycler

    NUM_COLORS = len(elevs)
    cmap = pl.get_cmap(cmap)
    if cmap.N >= 256:
        colors = [cmap(1.0 * i / NUM_COLORS) for i in range(NUM_COLORS)]
    else:
        colors = cmap.colors
    cycle = cycler(color=colors)
    paax.set_prop_cycle(cycle)

    # plot beams
    for i, el in enumerate(elevs):
        alt = xyz[i, ..., 2]
        groundrange = np.sqrt(xyz[i, ..., 0]**2 + xyz[i, ..., 1]**2)

        if cg:
            plrange = thetap
            plalt = ecp + alt
            beamradius = util.half_power_radius(ranges, beamwidth)
        else:
            plrange = np.insert(groundrange, 0, 0)
            plalt = np.insert(alt, 0, sitecoords[2])
            beamradius = util.half_power_radius(plrange, beamwidth)

        _, center, edge = _plot_beam(plrange,
                                     plalt,
                                     beamradius,
                                     label=f"{el:4.1f}°",
                                     ax=paax)

    # legend 1
    handles, labels = ax.get_legend_handles_labels()
    leg1 = ax.legend(
        handles,
        labels,
        prop={"family": "monospace"},
        loc="upper left",
        bbox_to_anchor=(1.04, 1),
        borderaxespad=0,
    )

    # legend 2
    legend2["Center"] = center[0]
    legend2["3 dB"] = edge[0]
    ax.legend(
        legend2.values(),
        legend2.keys(),
        prop={"family": "monospace"},
        loc="lower left",
        bbox_to_anchor=(1.04, 0),
        borderaxespad=0,
    )

    # add legend 1
    ax.add_artist(leg1)

    # set axes labels
    ax.set_title(f"Radar Scan Strategy - {sitecoords}" + add_title)
    caax.set_xlabel(f"Range ({units})")
    caax.set_ylabel(f"Altitude ({units})")

    return ax
Esempio n. 25
0
def reproject_raster_dataset(src_ds, **kwargs):
    """Reproject/Resample given dataset according to keyword arguments

    Parameters
    ----------
    src_ds : gdal.Dataset
        raster image with georeferencing (GeoTransform at least)

    Keyword Arguments
    -----------------
    spacing : float
        float or tuple of two floats
        pixel spacing of destination dataset, same unit as pixel coordinates
    size : int
        tuple of two ints
        X/YRasterSize of destination dataset
    resample : GDALResampleAlg
        defaults to GRA_Bilinear
        GRA_NearestNeighbour = 0, GRA_Bilinear = 1, GRA_Cubic = 2,
        GRA_CubicSpline = 3, GRA_Lanczos = 4, GRA_Average = 5, GRA_Mode = 6,
        GRA_Max = 8, GRA_Min = 9, GRA_Med = 10, GRA_Q1 = 11, GRA_Q3 = 12
    projection_target : osr object
        destination dataset projection, defaults to None
    align : bool or Point
        If False, there is no destination grid aligment.
        If True, aligns the destination grid to the next integer multiple of
        destination grid.
        If Point (tuple, list of upper-left x,y-coordinate), the destination
        grid is aligned to this point.

    Returns
    -------
    dst_ds : gdal.Dataset
        reprojected/resampled raster dataset
    """

    # checking kwargs
    spacing = kwargs.pop('spacing', None)
    size = kwargs.pop('size', None)
    resample = kwargs.pop('resample', gdal.GRA_Bilinear)
    src_srs = kwargs.pop('projection_source', None)
    dst_srs = kwargs.pop('projection_target', None)
    align = kwargs.pop('align', False)

    # Get the GeoTransform vector
    src_geo = src_ds.GetGeoTransform()
    x_size = src_ds.RasterXSize
    y_size = src_ds.RasterYSize

    # get extent
    ulx = src_geo[0]
    uly = src_geo[3]
    lrx = src_geo[0] + src_geo[1] * x_size
    lry = src_geo[3] + src_geo[5] * y_size

    extent = np.array([[[ulx, uly], [lrx, uly]], [[ulx, lry], [lrx, lry]]])

    if dst_srs:
        src_srs = osr.SpatialReference()
        src_srs.ImportFromWkt(src_ds.GetProjection())

        # Transformation

        extent = georef.reproject(extent,
                                  projection_source=src_srs,
                                  projection_target=dst_srs)

        # wkt needed
        src_srs = src_srs.ExportToWkt()
        dst_srs = dst_srs.ExportToWkt()

    (ulx, uly, urx, ury, llx, lly, lrx,
     lry) = tuple(list(extent.flatten().tolist()))

    # align grid to destination raster or UL-corner point
    if align:
        try:
            ulx, uly = align
        except TypeError:
            pass

        ulx = int(max(np.floor(ulx), np.floor(llx)))
        uly = int(min(np.ceil(uly), np.ceil(ury)))
        lrx = int(min(np.ceil(lrx), np.ceil(urx)))
        lry = int(max(np.floor(lry), np.floor(lly)))

    # calculate cols/rows or xspacing/yspacing
    if spacing:
        try:
            x_ps, y_ps = spacing
        except TypeError:
            x_ps = spacing
            y_ps = spacing

        cols = int(abs(lrx - ulx) / x_ps)
        rows = int(abs(uly - lry) / y_ps)
    elif size:
        cols, rows = size
        x_ps = x_size * src_geo[1] / cols
        y_ps = y_size * abs(src_geo[5]) / rows
    else:
        raise NameError("Whether keyword 'spacing' or 'size' must be given")

    # create destination in-memory raster
    mem_drv = gdal.GetDriverByName('MEM')

    # and set RasterSize according ro cols/rows
    dst_ds = mem_drv.Create('', cols, rows, 1, gdal.GDT_Float32)

    # Create the destination GeoTransform with changed x/y spacing
    dst_geo = (ulx, x_ps, src_geo[2], uly, src_geo[4], -y_ps)

    # apply GeoTransform to destination dataset
    dst_ds.SetGeoTransform(dst_geo)

    # apply Projection to destination dataset
    if dst_srs is not None:
        dst_ds.SetProjection(dst_srs)

    # nodata handling, need to initialize dst_ds with nodata
    src_band = src_ds.GetRasterBand(1)
    nodata = src_band.GetNoDataValue()
    dst_band = dst_ds.GetRasterBand(1)
    if nodata is not None:
        dst_band.SetNoDataValue(nodata)
        dst_band.WriteArray(np.ones((rows, cols)) * nodata)
    dst_band.FlushCache()

    # resample and reproject dataset
    gdal.ReprojectImage(src_ds, dst_ds, src_srs, dst_srs, resample)

    return dst_ds
Esempio n. 26
0
def plot_ppi_crosshair(site,
                       ranges,
                       angles=None,
                       proj=None,
                       elev=0.,
                       ax=None,
                       **kwargs):
    """Plots a Crosshair for a Plan Position Indicator (PPI).

    Parameters
    ----------
    site : tuple
        Tuple of coordinates of the radar site.
        If `proj` is not used, this simply becomes the offset for the origin
        of the coordinate system.
        If `proj` is used, values must be given as (longitude, latitude,
        altitude) tuple of geographical coordinates.
    ranges : list
        List of ranges, for which range circles should be drawn.
        If ``proj`` is None arbitrary units may be used (such that they fit
        with the underlying PPI plot.
        Otherwise the ranges must be given in meters.
    angles : list
        List of angles (in degrees) for which straight lines should be drawn.
        These lines will be drawn starting from the center and until the
        largest range.
    proj : osr spatial reference object
        GDAL OSR Spatial Reference Object describing projection
        The function will calculate lines and circles according to
        georeferenced coordinates taking beam propagation, earth's curvature
        and scale effects due to projection into account.
        Depending on the projection, crosshair lines might not be straight and
        range circles might appear elliptical (also check if the aspect of the
        axes might not also be responsible for this).
    elev : float or array of same shape as az
        Elevation angle of the scan or individual azimuths.
        May improve georeferencing coordinates for larger elevation angles.
    ax : :class:`matplotlib:matplotlib.axes.Axes`
        If given, the crosshair will be plotted into this axes object. If None
        matplotlib's current axes (function gca()) concept will be used to
        determine the axes.

    Keyword Arguments
    -----------------
    line :  dict
        dictionary, which will be passed to the crosshair line objects using
        the standard keyword inheritance mechanism. If not given defaults will
        be used.
    circle : dict
        dictionary, which will be passed to the range circle line objects using
        the standard keyword inheritance mechanism. If not given defaults will
        be used.

    See also
    --------
    :func:`~wradlib.vis.plot_ppi` - plotting a PPI in cartesian coordinates

    Returns
    -------
    ax :  :class:`matplotlib:matplotlib.axes.Axes`
        The axes object into which the PPI was plotted

    Examples
    --------
    See :ref:`/notebooks/visualisation/wradlib_plot_ppi_example.ipynb`.

    """
    # check coordinate tuple
    if site and len(site) < 3:
        raise ValueError("WRADLIB: `site` need to be a tuple of coordinates "
                         "(longitude, latitude, altitude).")

    # if we didn't get an axes object, find the current one
    if ax is None:
        ax = pl.gca()

    if angles is None:
        angles = [0, 90, 180, 270]

    # set default line keywords
    linekw = dict(color='gray', linestyle='dashed')
    # update with user settings
    linekw.update(kwargs.get('line', {}))

    # set default circle keywords
    circkw = dict(edgecolor='gray', linestyle='dashed', facecolor='none')
    # update with user settings
    circkw.update(kwargs.get('circle', {}))

    # determine coordinates for 'straight' lines
    if proj:
        # projected
        # reproject the site coordinates
        psite = georef.reproject(*site, projection_target=proj)
        # these lines might not be straigt so we approximate them with 10
        # segments. Produce polar coordinates
        rr, az = np.meshgrid(np.linspace(0, ranges[-1], 10), angles)
        # convert from spherical to projection
        coords = georef.spherical_to_proj(rr, az, elev, site, proj=proj)
        nsewx = coords[..., 0]
        nsewy = coords[..., 1]
    else:
        # no projection
        psite = site
        rr, az = np.meshgrid(np.linspace(0, ranges[-1], 2), angles)
        # use simple trigonometry to calculate coordinates
        nsewx, nsewy = (psite[0] + rr * np.cos(np.radians(90 - az)),
                        psite[1] + rr * np.sin(np.radians(90 - az)))

    # mark the site, just in case nothing else would be drawn
    ax.plot(*psite[:2], marker='+', **linekw)

    # draw the lines
    for i in range(len(angles)):
        ax.add_line(lines.Line2D(nsewx[i, :], nsewy[i, :], **linekw))

    # draw the range circles
    if proj:
        # produce an approximation of the circle
        x, y = np.meshgrid(ranges, np.arange(360))
        poly = georef.spherical_to_proj(ranges,
                                        np.arange(360),
                                        elev,
                                        site,
                                        proj=proj)[..., :2]
        poly = np.swapaxes(poly, 0, 1)
        for p in poly:
            ax.add_patch(patches.Polygon(p, **circkw))
    else:
        # in the unprojected case, we may use 'true' circles.
        for r in ranges:
            ax.add_patch(patches.Circle(psite, r, **circkw))

    # there should be not much wrong, setting the axes aspect to equal
    # by default
    ax.set_aspect('equal')

    # return the axes object for later use
    return ax
Esempio n. 27
0
def ex_clutter_cloud():
    # read the radar volume scan
    path = os.path.dirname(__file__) + '/'
    pvol = io.read_OPERA_hdf5(path + 'data/20130429043000.rad.bewid.pvol.dbzh.scan1.hdf')

    # Count the number of dataset

    ntilt = 1
    for i in range(100):
        try:
            pvol["dataset%d/what" % ntilt]
            ntilt += 1
        except Exception:
            ntilt -= 1
            break

    # Construct radar values

    nrays = int(pvol["dataset1/where"]["nrays"])
    nbins = int(pvol["dataset1/where"]["nbins"])
    val = np.empty((ntilt, nrays, nbins))
    for t in range(ntilt):
        val[t, ...] = pvol["dataset%d/data1/data" % (t + 1)]
    gain = float(pvol["dataset1/data1/what"]["gain"])
    offset = float(pvol["dataset1/data1/what"]["offset"])
    val = val * gain + offset

    # Construct radar coordinates

    rscale = int(pvol["dataset1/where"]["rscale"])
    coord = np.empty((ntilt, nrays, nbins, 3))
    for t in range(ntilt):
        elangle = pvol["dataset%d/where" % (t + 1)]["elangle"]
        coord[t, ...] = georef.sweep_centroids(nrays, rscale, nbins, elangle)
    ascale = math.pi / nrays
    sitecoords = (pvol["where"]["lon"], pvol["where"]["lat"], pvol["where"]["height"])
    proj_radar = georef.create_osr("aeqd", lat_0=pvol["where"]["lat"], lon_0=pvol["where"]["lon"])
    coord[..., 0], coord[..., 1], coord[..., 2] = georef.polar2lonlatalt_n(coord[..., 0], np.degrees(coord[..., 1]),
                                                                           coord[..., 2], sitecoords, re=6370040.,
                                                                           ke=4. / 3.)
    coord = georef.reproject(coord, projection_target=proj_radar)

    # Construct collocated satellite data

    sat_gdal = io.read_safnwc(path + 'data/SAFNWC_MSG3_CT___201304290415_BEL_________.h5')
    val_sat = georef.read_gdal_values(sat_gdal)
    coord_sat = georef.read_gdal_coordinates(sat_gdal)
    proj_sat = georef.read_gdal_projection(sat_gdal)
    coord_sat = georef.reproject(coord_sat, projection_source=proj_sat, projection_target=proj_radar)
    coord_radar = coord
    interp = ipol.Nearest(coord_sat[..., 0:2].reshape(-1, 2), coord_radar[..., 0:2].reshape(-1, 2))
    val_sat = interp(val_sat.ravel()).reshape(val.shape)

    # Estimate localisation errors

    timelag = 9 * 60
    wind = 10
    error = np.absolute(timelag) * wind

    # Identify clutter based on collocated cloudtype
    clutter = cl.filter_cloudtype(val[0, ...], val_sat[0, ...], scale=rscale, smoothing=error)
    # visualize the result
    plt.figure()
    vis.plot_ppi(clutter)
    plt.suptitle('clutter')
    plt.savefig('clutter_cloud_example_1.png')
    plt.figure()
    vis.plot_ppi(val_sat[0, ...])
    plt.suptitle('satellite')
    plt.savefig('clutter_cloud_example_2.png')
    plt.show()