def test_single_simulation_moran(self): s = GameDynamicsWrapper(CWOLOnlyL, Moran, dynamics_kwargs=dict(pop_size=3000), game_kwargs=dict(a=0.2, equilibrium_tolerance=.5)) s.simulate(num_gens=30000)
def test_many_simulation(self): s = GameDynamicsWrapper(CWOL, WrightFisher, dynamics_kwargs=dict(), game_kwargs=dict(a=.2, equilibrium_tolerance=.2)) print s.simulate_many(num_iterations=10, num_gens=150)
def test_single_simulation(self): s = GameDynamicsWrapper(CtsDisc, WrightFisher, dynamics_kwargs=dict(selection_strength=.3)) s.simulate(num_gens=190, graph=dict(shading='redblue', options=[ 'area', 'meanStratLine', 'payoffLine', 'largeFont', 'noLegend' ]), start_state=state)
def test_many_simulation(self): # Determines which equilibria result based upon several simulations, text output s = GameDynamicsWrapper(CtsDisc, WrightFisher, dynamics_kwargs=dict(selection_strength=0.3))
def test_single_simulation(self): s = GameDynamicsWrapper(HawkDoveBourgeois, WrightFisher) s.simulate(num_gens=1000)#, graph=dict(options=['area', 'largeFont']))
def calculate_stationary(self): s = GameDynamicsWrapper(Coordination, WrightFisher) s.stationaryDistribution()
def test_unclassified_d(self): s = GameDynamicsWrapper(CWOLOnlyL, WrightFisher, game_kwargs=dict(d=-1.0)) s.simulate(num_gens=500)
def test_single_simulation(self): s = GameDynamicsWrapper(CWOL, WrightFisher, game_kwargs=dict()) s.simulate(num_gens=300)
def test_many_simulation(self): # Determines which equilibria result based upon several simulations, text output s = GameDynamicsWrapper(HawkDove, WrightFisher) print(s.simulate_many(num_iterations=100, num_gens=100, graph=dict(options=['area', 'smallFont'])))
def test_single_simulation(self): s = GameDynamicsWrapper(HawkDove, WrightFisher) s.simulate(num_gens=100, graph=dict(options=['area', 'smallFont']))