Esempio n. 1
0
 def test_single_simulation_moran(self):
     s = GameDynamicsWrapper(CWOLOnlyL,
                             Moran,
                             dynamics_kwargs=dict(pop_size=3000),
                             game_kwargs=dict(a=0.2,
                                              equilibrium_tolerance=.5))
     s.simulate(num_gens=30000)
Esempio n. 2
0
 def test_many_simulation(self):
     s = GameDynamicsWrapper(CWOL,
                             WrightFisher,
                             dynamics_kwargs=dict(),
                             game_kwargs=dict(a=.2,
                                              equilibrium_tolerance=.2))
     print s.simulate_many(num_iterations=10, num_gens=150)
Esempio n. 3
0
 def test_single_simulation(self):
     s = GameDynamicsWrapper(CtsDisc,
                             WrightFisher,
                             dynamics_kwargs=dict(selection_strength=.3))
     s.simulate(num_gens=190,
                graph=dict(shading='redblue',
                           options=[
                               'area', 'meanStratLine', 'payoffLine',
                               'largeFont', 'noLegend'
                           ]),
                start_state=state)
 def test_many_simulation(self):  # Determines which equilibria result based upon several simulations, text output
     s = GameDynamicsWrapper(CtsDisc, WrightFisher, dynamics_kwargs=dict(selection_strength=0.3))
 def test_single_simulation(self):
     s = GameDynamicsWrapper(HawkDoveBourgeois, WrightFisher)
     s.simulate(num_gens=1000)#, graph=dict(options=['area', 'largeFont']))
Esempio n. 6
0
 def calculate_stationary(self):
     s = GameDynamicsWrapper(Coordination, WrightFisher)
     s.stationaryDistribution()
Esempio n. 7
0
 def test_unclassified_d(self):
     s = GameDynamicsWrapper(CWOLOnlyL,
                             WrightFisher,
                             game_kwargs=dict(d=-1.0))
     s.simulate(num_gens=500)
Esempio n. 8
0
 def test_single_simulation(self):
     s = GameDynamicsWrapper(CWOL, WrightFisher, game_kwargs=dict())
     s.simulate(num_gens=300)
Esempio n. 9
0
 def test_unclassified_d(self):
     s = GameDynamicsWrapper(CWOLOnlyL, WrightFisher, game_kwargs=dict(d=-1.0))
     s.simulate(num_gens=500)
Esempio n. 10
0
 def test_many_simulation(self):
     s = GameDynamicsWrapper(CWOL, WrightFisher, dynamics_kwargs=dict(), game_kwargs=dict(a=.2, equilibrium_tolerance=.2))
     print s.simulate_many(num_iterations=10, num_gens=150)
Esempio n. 11
0
 def test_single_simulation(self):
     s = GameDynamicsWrapper(CWOL, WrightFisher, game_kwargs=dict())
     s.simulate(num_gens=300)
Esempio n. 12
0
 def test_single_simulation_moran(self):
     s = GameDynamicsWrapper(CWOLOnlyL, Moran, dynamics_kwargs=dict(pop_size=3000), game_kwargs=dict(a=0.2, equilibrium_tolerance=.5))
     s.simulate(num_gens=30000)
Esempio n. 13
0
 def test_many_simulation(self):  # Determines which equilibria result based upon several simulations, text output
     s = GameDynamicsWrapper(HawkDove, WrightFisher)
     print(s.simulate_many(num_iterations=100, num_gens=100, graph=dict(options=['area', 'smallFont'])))
Esempio n. 14
0
 def test_single_simulation(self):
     s = GameDynamicsWrapper(HawkDove, WrightFisher)
     s.simulate(num_gens=100, graph=dict(options=['area', 'smallFont']))