def actualSetUp(self, freqwin=3, block=False, dopol=False, zerow=False):

        self.npixel = 1024
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = freqwin
        self.vis_list = list()
        self.ntimes = 5
        self.cellsize = 0.0005
        # Choose the interval so that the maximum change in w is smallish
        integration_time = numpy.pi * (24 / (12 * 60))
        self.times = numpy.linspace(-integration_time * (self.ntimes // 2),
                                    integration_time * (self.ntimes // 2),
                                    self.ntimes)

        if freqwin > 1:
            self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
            self.channelwidth = numpy.array(
                freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.frequency = numpy.array([1.0e8])
            self.channelwidth = numpy.array([4e7])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        self.phasecentre = SkyCoord(ra=+30.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.vis_list = [
            ingest_unittest_visibility(self.low, [self.frequency[freqwin]],
                                       [self.channelwidth[freqwin]],
                                       self.times,
                                       self.vis_pol,
                                       self.phasecentre,
                                       block=block,
                                       zerow=zerow)
            for freqwin, _ in enumerate(self.frequency)
        ]
    def actualSetUp(self,
                    nfreqwin=3,
                    dospectral=True,
                    dopol=False,
                    amp_errors=None,
                    phase_errors=None,
                    zerow=True):

        if amp_errors is None:
            amp_errors = {'T': 0.0, 'G': 0.1}
        if phase_errors is None:
            phase_errors = {'T': 1.0, 'G': 0.0}

        self.npixel = 512
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = nfreqwin
        self.vis_list = list()
        self.ntimes = 1
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
        self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)

        if self.freqwin > 1:
            self.channelwidth = numpy.array(
                self.freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.channelwidth = numpy.array([1e6])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.blockvis_list = [
            ingest_unittest_visibility(self.low, [self.frequency[i]],
                                       [self.channelwidth[i]],
                                       self.times,
                                       self.vis_pol,
                                       self.phasecentre,
                                       block=True,
                                       zerow=zerow) for i in range(nfreqwin)
        ]

        for v in self.blockvis_list:
            v.data['vis'][...] = 1.0 + 0.0j

        self.error_blockvis_list = [
            copy_visibility(v) for v in self.blockvis_list
        ]
        gt = create_gaintable_from_blockvisibility(self.blockvis_list[0])
        gt = simulate_gaintable(gt,
                                phase_error=0.1,
                                amplitude_error=0.0,
                                smooth_channels=1,
                                leakage=0.0,
                                seed=180555)
        self.error_blockvis_list = [
            apply_gaintable(self.error_blockvis_list[i], gt)
            for i in range(self.freqwin)
        ]

        assert numpy.max(
            numpy.abs(self.error_blockvis_list[0].vis -
                      self.blockvis_list[0].vis)) > 0.0
 def actualSetUp(self, add_errors=False, freqwin=7, block=False, dospectral=True, dopol=False,
                 zerow=True):
     
     self.npixel = 256
     self.low = create_named_configuration('LOWBD2', rmax=750.0)
     self.freqwin = freqwin
     self.vis_list = list()
     self.ntimes = 5
     cellsize = 0.001
     self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
     self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
     
     if freqwin > 1:
         self.channelwidth = numpy.array(freqwin * [self.frequency[1] - self.frequency[0]])
     else:
         self.channelwidth = numpy.array([1e6])
     
     if dopol:
         self.vis_pol = PolarisationFrame('linear')
         self.image_pol = PolarisationFrame('stokesIQUV')
         f = numpy.array([100.0, 20.0, -10.0, 1.0])
     else:
         self.vis_pol = PolarisationFrame('stokesI')
         self.image_pol = PolarisationFrame('stokesI')
         f = numpy.array([100.0])
     
     if dospectral:
         flux = numpy.array([f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
     else:
         flux = numpy.array([f])
     
     self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
     self.vis_list = [ingest_unittest_visibility(self.low,
                                                 [self.frequency[freqwin]],
                                                 [self.channelwidth[freqwin]],
                                                 self.times,
                                                 self.vis_pol,
                                                 self.phasecentre, block=block,
                                                 zerow=zerow)
                      for freqwin, _ in enumerate(self.frequency)]
     
     self.model_imagelist = [create_unittest_model(self.vis_list[freqwin],
                                                   self.image_pol,
                                                   cellsize=cellsize,
                                                   npixel=self.npixel)
                             for freqwin, _ in enumerate(self.frequency)]
     
     self.componentlist = [create_unittest_components(self.model_imagelist[freqwin],
                                                      flux[freqwin, :][numpy.newaxis, :])
                           for freqwin, _ in enumerate(self.frequency)]
     
     self.model_imagelist = [insert_skycomponent(self.model_imagelist[freqwin],
                                                 self.componentlist[freqwin])
                             for freqwin, _ in enumerate(self.frequency)]
     
     self.vis_list = [predict_skycomponent_visibility(self.vis_list[freqwin],
                                                      self.componentlist[freqwin])
                      for freqwin, _ in enumerate(self.frequency)]
     
     # Calculate the model convolved with a Gaussian.
     
     model = self.model_imagelist[0]
     
     self.cmodel = smooth_image(model)
     export_image_to_fits(model, '%s/test_imaging_serial_deconvolved_model.fits' % self.dir)
     export_image_to_fits(self.cmodel, '%s/test_imaging_serial_deconvolved_cmodel.fits' % self.dir)
     
     if add_errors and block:
         self.vis_list = [insert_unittest_errors(self.vis_list[i])
                          for i, _ in enumerate(self.frequency)]
Esempio n. 4
0
    def actualSetUp(self,
                    add_errors=False,
                    freqwin=3,
                    block=False,
                    dospectral=True,
                    dopol=False,
                    zerow=False,
                    makegcfcf=False):

        self.npixel = 256
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = freqwin
        self.vis_list = list()
        self.ntimes = 5
        self.cellsize = 0.0005
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
        self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)

        if freqwin > 1:
            self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
            self.channelwidth = numpy.array(
                freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.frequency = numpy.array([1.0e8])
            self.channelwidth = numpy.array([4e7])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.vis_list = [
            ingest_unittest_visibility(self.low, [self.frequency[freqwin]],
                                       [self.channelwidth[freqwin]],
                                       self.times,
                                       self.vis_pol,
                                       self.phasecentre,
                                       block=block,
                                       zerow=zerow)
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.model_list = [
            create_unittest_model(self.vis_list[freqwin],
                                  self.image_pol,
                                  cellsize=self.cellsize,
                                  npixel=self.npixel)
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.components_list = [
            create_unittest_components(self.model_list[freqwin],
                                       flux[freqwin, :][numpy.newaxis, :],
                                       single=True)
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.model_list = [
            insert_skycomponent(self.model_list[freqwin],
                                self.components_list[freqwin])
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.vis_list = [
            predict_skycomponent_visibility(self.vis_list[freqwin],
                                            self.components_list[freqwin])
            for freqwin, _ in enumerate(self.frequency)
        ]
        centre = self.freqwin // 2
        # Calculate the model convolved with a Gaussian.
        self.model = self.model_list[centre]

        self.cmodel = smooth_image(self.model)
        export_image_to_fits(self.model,
                             '%s/test_imaging_model.fits' % self.dir)
        export_image_to_fits(self.cmodel,
                             '%s/test_imaging_cmodel.fits' % self.dir)

        if add_errors and block:
            self.vis_list = [
                insert_unittest_errors(self.vis_list[i])
                for i, _ in enumerate(self.frequency)
            ]

        self.components = self.components_list[centre]

        if makegcfcf:
            self.gcfcf = [
                create_awterm_convolutionfunction(self.model,
                                                  nw=61,
                                                  wstep=16.0,
                                                  oversampling=4,
                                                  support=60,
                                                  use_aaf=True)
            ]
            self.gcfcf_clipped = [
                (self.gcfcf[0][0],
                 apply_bounding_box_convolutionfunction(self.gcfcf[0][1],
                                                        fractional_level=1e-3))
            ]

            self.gcfcf_joint = [
                create_awterm_convolutionfunction(self.model,
                                                  nw=11,
                                                  wstep=16.0,
                                                  oversampling=4,
                                                  support=60,
                                                  use_aaf=True)
            ]

        else:
            self.gcfcf = None
            self.gcfcf_clipped = None
            self.gcfcf_joint = None
Esempio n. 5
0
    def actualSetUp(self, freqwin=1, block=True, dopol=False, zerow=False):

        self.npixel = 1024
        self.low = create_named_configuration('LOWBD2', rmax=550.0)
        self.freqwin = freqwin
        self.blockvis_list = list()
        self.ntimes = 5
        self.cellsize = 0.0005
        # Choose the interval so that the maximum change in w is smallish
        integration_time = numpy.pi * (24 / (12 * 60))
        self.times = numpy.linspace(-integration_time * (self.ntimes // 2),
                                    integration_time * (self.ntimes // 2),
                                    self.ntimes)

        if freqwin > 1:
            self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
            self.channelwidth = numpy.array(
                freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.frequency = numpy.array([1.0e8])
            self.channelwidth = numpy.array([4e7])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        self.phasecentre = SkyCoord(ra=+0.0 * u.deg,
                                    dec=-40.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.blockvis_list = [
            ingest_unittest_visibility(self.low, [self.frequency[freqwin]],
                                       [self.channelwidth[freqwin]],
                                       self.times,
                                       self.vis_pol,
                                       self.phasecentre,
                                       block=block,
                                       zerow=zerow)
            for freqwin, _ in enumerate(self.frequency)
        ]
        self.vis_list = [
            convert_blockvisibility_to_visibility(bv)
            for bv in self.blockvis_list
        ]

        self.skymodel_list = [
            create_low_test_skymodel_from_gleam(
                npixel=self.npixel,
                cellsize=self.cellsize,
                frequency=[self.frequency[f]],
                phasecentre=self.phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"),
                flux_limit=0.6,
                flux_threshold=1.0,
                flux_max=5.0) for f, freq in enumerate(self.frequency)
        ]

        assert isinstance(self.skymodel_list[0].image,
                          Image), self.skymodel_list[0].image
        assert isinstance(self.skymodel_list[0].components[0],
                          Skycomponent), self.skymodel_list[0].components[0]
        assert len(self.skymodel_list[0].components) == 19, len(
            self.skymodel_list[0].components)
        self.skymodel_list = expand_skymodel_by_skycomponents(
            self.skymodel_list[0])
        assert len(self.skymodel_list) == 20, len(self.skymodel_list)
        assert numpy.max(numpy.abs(
            self.skymodel_list[-1].image.data)) > 0.0, "Image is empty"
        self.vis_list = [
            copy_visibility(self.vis_list[0], zero=True)
            for i, _ in enumerate(self.skymodel_list)
        ]
def simulate_list_serial_workflow(
        config='LOWBD2',
        phasecentre=SkyCoord(ra=+15.0 * u.deg,
                             dec=-60.0 * u.deg,
                             frame='icrs',
                             equinox='J2000'),
        frequency=None,
        channel_bandwidth=None,
        times=None,
        polarisation_frame=PolarisationFrame("stokesI"),
        order='frequency',
        format='blockvis',
        rmax=1000.0,
        zerow=False):
    """ A component to simulate an observation

    The simulation step can generate a single BlockVisibility or a list of BlockVisibility's.
    The parameter keyword determines the way that the list is constructed.
    If order='frequency' then len(frequency) BlockVisibility's with all times are created.
    If order='time' then  len(times) BlockVisibility's with all frequencies are created.
    If order = 'both' then len(times) * len(times) BlockVisibility's are created each with
    a single time and frequency. If order = None then all data are created in one BlockVisibility.

    The output format can be either 'blockvis' (for calibration) or 'vis' (for imaging)

    :param config: Name of configuration: def LOWBDS-CORE
    :param phasecentre: Phase centre def: SkyCoord(ra=+15.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
    :param frequency: def [1e8]
    :param channel_bandwidth: def [1e6]
    :param times: Observing times in radians: def [0.0]
    :param polarisation_frame: def PolarisationFrame("stokesI")
    :param order: 'time' or 'frequency' or 'both' or None: def 'frequency'
    :param format: 'blockvis' or 'vis': def 'blockvis'
    :return: vis_list with different frequencies in different elements
    """
    if format == 'vis':
        create_vis = create_visibility
    else:
        create_vis = create_blockvisibility

    if times is None:
        times = [0.0]
    if channel_bandwidth is None:
        channel_bandwidth = [1e6]
    if frequency is None:
        frequency = [1e8]
    conf = create_named_configuration(config, rmax=rmax)

    if order == 'time':
        log.debug(
            "simulate_list_serial_workflow: Simulating distribution in %s" %
            order)
        vis_list = list()
        for i, time in enumerate(times):
            vis_list.append(
                create_vis(conf,
                           numpy.array([times[i]]),
                           frequency=frequency,
                           channel_bandwidth=channel_bandwidth,
                           weight=1.0,
                           phasecentre=phasecentre,
                           polarisation_frame=polarisation_frame,
                           zerow=zerow))

    elif order == 'frequency':
        log.debug(
            "simulate_list_serial_workflow: Simulating distribution in %s" %
            order)
        vis_list = list()
        for j, _ in enumerate(frequency):
            vis_list.append(
                create_vis(conf,
                           times,
                           frequency=numpy.array([frequency[j]]),
                           channel_bandwidth=numpy.array(
                               [channel_bandwidth[j]]),
                           weight=1.0,
                           phasecentre=phasecentre,
                           polarisation_frame=polarisation_frame,
                           zerow=zerow))

    elif order == 'both':
        log.debug(
            "simulate_list_serial_workflow: Simulating distribution in time and frequency"
        )
        vis_list = list()
        for i, _ in enumerate(times):
            for j, _ in enumerate(frequency):
                vis_list.append(
                    create_vis(conf,
                               numpy.array([times[i]]),
                               frequency=numpy.array([frequency[j]]),
                               channel_bandwidth=numpy.array(
                                   [channel_bandwidth[j]]),
                               weight=1.0,
                               phasecentre=phasecentre,
                               polarisation_frame=polarisation_frame,
                               zerow=zerow))

    elif order is None:
        log.debug("simulate_list_serial_workflow: Simulating into single %s" %
                  format)
        vis_list = list()
        vis_list.append(
            create_vis(conf,
                       times,
                       frequency=frequency,
                       channel_bandwidth=channel_bandwidth,
                       weight=1.0,
                       phasecentre=phasecentre,
                       polarisation_frame=polarisation_frame,
                       zerow=zerow))
    else:
        raise NotImplementedError("order $s not known" % order)
    return vis_list
    def actualSetup(self, nsources=None, nvoronoi=None):

        n_workers = 8

        # Set up the observation: 10 minutes at transit, with 10s integration.
        # Skip 5/6 points to avoid outstation redundancy

        nfreqwin = 1
        ntimes = 3
        self.rmax = 2500.0
        dec = -40.0 * u.deg
        frequency = [1e8]
        channel_bandwidth = [0.1e8]
        times = numpy.linspace(-10.0, 10.0,
                               ntimes) * numpy.pi / (3600.0 * 12.0)

        phasecentre = SkyCoord(ra=+0.0 * u.deg,
                               dec=dec,
                               frame='icrs',
                               equinox='J2000')
        low = create_named_configuration('LOWBD2', rmax=self.rmax)

        centre = numpy.mean(low.xyz, axis=0)
        distance = numpy.hypot(low.xyz[:, 0] - centre[0],
                               low.xyz[:, 1] - centre[1],
                               low.xyz[:, 2] - centre[2])
        lowouter = low.data[distance > 1000.0][::6]
        lowcore = low.data[distance < 1000.0][::3]
        low.data = numpy.hstack((lowcore, lowouter))

        blockvis = create_blockvisibility(
            low,
            times,
            frequency=frequency,
            channel_bandwidth=channel_bandwidth,
            weight=1.0,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"),
            zerow=True)

        vis = convert_blockvisibility_to_visibility(blockvis)
        advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

        cellsize = advice['cellsize']
        npixel = advice['npixels2']

        small_model = create_image_from_visibility(blockvis,
                                                   npixel=512,
                                                   frequency=frequency,
                                                   nchan=nfreqwin,
                                                   cellsize=cellsize,
                                                   phasecentre=phasecentre)

        vis.data['imaging_weight'][...] = vis.data['weight'][...]
        vis = weight_list_serial_workflow([vis], [small_model])[0]
        vis = taper_list_serial_workflow([vis], 3 * cellsize)[0]

        blockvis = convert_visibility_to_blockvisibility(vis)

        # ### Generate the model from the GLEAM catalog, including application of the primary beam.

        beam = create_image_from_visibility(blockvis,
                                            npixel=npixel,
                                            frequency=frequency,
                                            nchan=nfreqwin,
                                            cellsize=cellsize,
                                            phasecentre=phasecentre)
        beam = create_low_test_beam(beam)

        flux_limit = 0.5
        original_gleam_components = create_low_test_skycomponents_from_gleam(
            flux_limit=flux_limit,
            phasecentre=phasecentre,
            frequency=frequency,
            polarisation_frame=PolarisationFrame('stokesI'),
            radius=0.15)

        all_components = apply_beam_to_skycomponent(original_gleam_components,
                                                    beam)
        all_components = filter_skycomponents_by_flux(all_components,
                                                      flux_min=flux_limit)
        voronoi_components = filter_skycomponents_by_flux(all_components,
                                                          flux_min=1.5)

        def max_flux(elem):
            return numpy.max(elem.flux)

        voronoi_components = sorted(voronoi_components,
                                    key=max_flux,
                                    reverse=True)

        if nsources is not None:
            all_components = [all_components[0]]

        if nvoronoi is not None:
            voronoi_components = [voronoi_components[0]]

        self.screen = import_image_from_fits(
            arl_path('data/models/test_mpc_screen.fits'))
        all_gaintables = create_gaintable_from_screen(blockvis, all_components,
                                                      self.screen)

        gleam_skymodel_noniso = [
            SkyModel(components=[all_components[i]],
                     gaintable=all_gaintables[i])
            for i, sm in enumerate(all_components)
        ]

        # ### Now predict the visibility for each skymodel and apply the gaintable for that skymodel,
        # returning a list of visibilities, one for each skymodel. We then sum these to obtain
        # the total predicted visibility. All images and skycomponents in the same skymodel
        # get the same gaintable applied which means that in this case each skycomponent has a separate gaintable.

        self.all_skymodel_noniso_vis = convert_blockvisibility_to_visibility(
            blockvis)

        ngroup = n_workers
        future_vis = arlexecute.scatter(self.all_skymodel_noniso_vis)
        chunks = [
            gleam_skymodel_noniso[i:i + ngroup]
            for i in range(0, len(gleam_skymodel_noniso), ngroup)
        ]
        for chunk in chunks:
            result = predict_skymodel_list_arlexecute_workflow(future_vis,
                                                               chunk,
                                                               context='2d',
                                                               docal=True)
            work_vis = arlexecute.compute(result, sync=True)
            for w in work_vis:
                self.all_skymodel_noniso_vis.data['vis'] += w.data['vis']
            assert numpy.max(
                numpy.abs(self.all_skymodel_noniso_vis.data['vis'])) > 0.0

        self.all_skymodel_noniso_blockvis = convert_visibility_to_blockvisibility(
            self.all_skymodel_noniso_vis)

        # ### Remove weaker of components that are too close (0.02 rad)
        idx, voronoi_components = remove_neighbouring_components(
            voronoi_components, 0.02)

        model = create_image_from_visibility(blockvis,
                                             npixel=npixel,
                                             frequency=frequency,
                                             nchan=nfreqwin,
                                             cellsize=cellsize,
                                             phasecentre=phasecentre)

        # Use the gaintable for the brightest component as the starting gaintable
        all_gaintables[0].gain[...] = numpy.conjugate(
            all_gaintables[0].gain[...])
        all_gaintables[0].gain[...] = 1.0 + 0.0j
        self.theta_list = initialize_skymodel_voronoi(model,
                                                      voronoi_components,
                                                      all_gaintables[0])
    def actualSetUp(self,
                    add_errors=False,
                    nfreqwin=7,
                    dospectral=True,
                    dopol=False,
                    zerow=True):

        self.npixel = 512
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = nfreqwin
        self.vis_list = list()
        self.ntimes = 5
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
        self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)

        if self.freqwin > 1:
            self.channelwidth = numpy.array(
                self.freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.channelwidth = numpy.array([1e6])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.blockvis_list = [
            ingest_unittest_visibility(self.low, [self.frequency[i]],
                                       [self.channelwidth[i]],
                                       self.times,
                                       self.vis_pol,
                                       self.phasecentre,
                                       block=True,
                                       zerow=zerow) for i in range(nfreqwin)
        ]

        self.vis_list = [
            convert_blockvisibility_to_visibility(bv)
            for bv in self.blockvis_list
        ]

        self.model_imagelist = [
            create_unittest_model(self.vis_list[i],
                                  self.image_pol,
                                  npixel=self.npixel,
                                  cellsize=0.0005) for i in range(nfreqwin)
        ]

        self.components_list = [
            create_unittest_components(self.model_imagelist[freqwin],
                                       flux[freqwin, :][numpy.newaxis, :])
            for freqwin, m in enumerate(self.model_imagelist)
        ]

        self.blockvis_list = [
            predict_skycomponent_visibility(self.blockvis_list[freqwin],
                                            self.components_list[freqwin])
            for freqwin, _ in enumerate(self.blockvis_list)
        ]

        self.model_imagelist = [
            insert_skycomponent(self.model_imagelist[freqwin],
                                self.components_list[freqwin])
            for freqwin in range(nfreqwin)
        ]
        model = self.model_imagelist[0]
        self.cmodel = smooth_image(model)
        if self.persist:
            export_image_to_fits(
                model, '%s/test_imaging_serial_model.fits' % self.dir)
            export_image_to_fits(
                self.cmodel, '%s/test_imaging_serial_cmodel.fits' % self.dir)

        if add_errors:
            gt = create_gaintable_from_blockvisibility(self.blockvis_list[0])
            gt = simulate_gaintable(gt,
                                    phase_error=0.1,
                                    amplitude_error=0.0,
                                    smooth_channels=1,
                                    leakage=0.0,
                                    seed=180555)
            self.blockvis_list = [
                apply_gaintable(self.blockvis_list[i], gt)
                for i in range(self.freqwin)
            ]

        self.vis_list = [
            convert_blockvisibility_to_visibility(bv)
            for bv in self.blockvis_list
        ]

        self.model_imagelist = [
            create_unittest_model(self.vis_list[i],
                                  self.image_pol,
                                  npixel=self.npixel,
                                  cellsize=0.0005) for i in range(nfreqwin)
        ]
Esempio n. 9
0
# In[4]:

nfreqwin = 1
ntimes = 61
rmax = 550.0
dec = -40.0 * u.deg
frequency = numpy.linspace(1e8, 1.3e8, nfreqwin)
if nfreqwin > 1:
    channel_bandwidth = numpy.array(nfreqwin * [frequency[1] - frequency[0]])
else:
    channel_bandwidth = [0.3e8]
times = numpy.linspace(-300, 300.0, ntimes) * numpy.pi / (3600.0 * 12.0)

phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=dec, frame='icrs', equinox='J2000')
lowcore = create_named_configuration('LOWBD2', rmax=rmax)

blockvis = create_blockvisibility(
    lowcore,
    times,
    frequency=frequency,
    channel_bandwidth=channel_bandwidth,
    weight=1.0,
    phasecentre=phasecentre,
    polarisation_frame=PolarisationFrame("stokesI"),
    zerow=True)

# ### Find sampling, image size, etc

# In[5]:
Esempio n. 10
0
 def ingest_visibility(self, freq=None, chan_width=None, times=None, add_errors=False,
                       block=True, bandpass=False):
     if freq is None:
         freq = [1e8]
     if chan_width is None:
         chan_width = [1e6]
     if times is None:
         times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 5)
     
     lowcore = create_named_configuration('LOWBD2', rmax=750.0)
     frequency = numpy.array(freq)
     channel_bandwidth = numpy.array(chan_width)
     
     phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
     if block:
         vt = create_blockvisibility(lowcore, times, frequency, channel_bandwidth=channel_bandwidth,
                                     weight=1.0, phasecentre=phasecentre,
                                     polarisation_frame=PolarisationFrame("stokesI"))
     else:
         vt = create_visibility(lowcore, times, frequency, channel_bandwidth=channel_bandwidth,
                                weight=1.0, phasecentre=phasecentre,
                                polarisation_frame=PolarisationFrame("stokesI"))
     cellsize = 0.001
     model = create_image_from_visibility(vt, npixel=self.npixel, cellsize=cellsize, npol=1,
                                          frequency=frequency, phasecentre=phasecentre,
                                          polarisation_frame=PolarisationFrame("stokesI"))
     nchan = len(self.frequency)
     flux = numpy.array(nchan * [[100.0]])
     facets = 4
     
     rpix = model.wcs.wcs.crpix - 1.0
     spacing_pixels = self.npixel // facets
     centers = [-1.5, -0.5, 0.5, 1.5]
     comps = list()
     for iy in centers:
         for ix in centers:
             p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
                 int(round(rpix[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
             sc = pixel_to_skycoord(p[0], p[1], model.wcs, origin=1)
             comp = create_skycomponent(direction=sc, flux=flux, frequency=frequency,
                                        polarisation_frame=PolarisationFrame("stokesI"))
             comps.append(comp)
     if block:
         predict_skycomponent_visibility(vt, comps)
     else:
         predict_skycomponent_visibility(vt, comps)
     insert_skycomponent(model, comps)
     self.comps = comps
     self.model = copy_image(model)
     self.empty_model = create_empty_image_like(model)
     export_image_to_fits(model, '%s/test_pipeline_functions_model.fits' % (self.dir))
     
     if add_errors:
         # These will be the same for all calls
         numpy.random.seed(180555)
         gt = create_gaintable_from_blockvisibility(vt)
         gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.0)
         vt = apply_gaintable(vt, gt)
         
         if bandpass:
             bgt = create_gaintable_from_blockvisibility(vt, timeslice=1e5)
             bgt = simulate_gaintable(bgt, phase_error=0.01, amplitude_error=0.01, smooth_channels=4)
             vt = apply_gaintable(vt, bgt)
     
     return vt