Esempio n. 1
0
def save_results_to_nifti(res, nifti, fitmethod, outname=None):

    if nifti.endswith('.nii'):
        nifti_base = nifti[:-4]
    elif nifti.endswith('.nii.gz'):
        nifti_base = nifti[:-7]

    if fitmethod == 'two_parameter_monoexp':

        t2map = out.take(indices=0, axis=FIT_AXIS)
        m0map = out.take(indices=1, axis=FIT_AXIS)
        R2map = out.take(indices=2, axis=FIT_AXIS)

        output_name_list = []
        output_basename_list = ['t2map', 'm0map', 'R2map']
        for item in output_basename_list:
            output_name_list.append(str(nifti_base) + '_' + item)
        output_list = [t2map, m0map, R2map]

        for num, item in enumerate(output_name_list):
            writer = niftiWriter(procpar, output_list[num])
            writer.write(item)

    if fitmethod == 'three_parameter_monoexp':

        t2map = out.take(indices=0, axis=FIT_AXIS)
        m0map = out.take(indices=1, axis=FIT_AXIS)
        constmap = out.take(indeices=2, axis=FIT_AXIS)
        R2map = out.take(indices=3, axis=FIT_AXIS)

        output_name_list = []
        output_basename_list = ['t2map', 'm0map', 'constmap', 'R2map']
        for item in output_basename_list:
            output_name_list.append(str(nifti_base) + '_' + item)
        output_list = [t2map, m0map, R2map]

        for num, item in enumerate(output_name_list):
            writer = niftiWriter(procpar, output_list[num])
            writer.write(item)

    if fitmethod == 'four_parameter_duoexp':

        m0map = out.take(indices=0, axis=FIT_AXIS)
        t2smap = out.take(indices=1, axis=FIT_AXIS)
        t2lmap = out.take(indices=2, axis=FIT_AXIS)
        fractmap = out.take(indeices=3, axis=FIT_AXIS)
        R2map = out.take(indices=4, axis=FIT_AXIS)

        output_name_list = []
        output_basename_list = [
            'm0map', 't2smap', 't2lmap', 'fractmap', 'R2map'
        ]
        for item in output_basename_list:
            output_name_list.append(str(nifti_base) + '_' + item)
        output_list = [t2map, m0map, R2map]

        for num, item in enumerate(output_name_list):
            writer = niftiWriter(procpar, output_list[num])
            writer.write(item)
Esempio n. 2
0
def main(fid, pp):

    fr = fidReader(fid)
    fr.print_header()
    data, hdr = fr.read()

    rec = recon(pp, data)
    kspace, imspace = rec.recon()
    #rec.recon()
    w_im = niftiWriter(pp, imspace)
    w_k = niftiWriter(pp, kspace)
    w_k.write_from_fid('out_kspace')
    w_im.write_from_fid('out_imspace')
Esempio n. 3
0
def fdf2nii(indir, out, saveprocpar):

    if indir.endswith('.img'):
        if out == None:
            out = str(indir[:-4].split('/')[-1] + '.nii')
            out_ppname = '.' + out[:-4] + '.procpar'
        else:
            out_ppname = '.' + out + '.procpar'
    else:
        print('Please give .img as input directory')
        return
    try:
        procpar = indir + '/procpar'
    except:
        print('procpar not found, quitting ...')
        return
    rdr = fdfReader(indir, out)
    (hdr, data) = rdr.read()

    writer = niftiWriter(procpar, data)
    writer.write(out)
    if saveprocpar:

        copy2(procpar, out_ppname)
        print('procpar saved as hidden: ' + str(out_ppname))
Esempio n. 4
0
        def make_fieldmap(minus_pi_data, plus_pi_data, procpar):
            """
            Make phase correction factor from minus Pi shifted and plus Pi shifted data. Does 
            unwrapping with prelude in two steps: first step is preliminary field map with output
            mask, then this output mask is holefilled and the unwrapping is done again
            """
            output_name_fieldmap = self.proc_dir + '/fieldmap_wrapped'
            output_name_fieldmap_uw = self.proc_dir + '/fieldmap_unwrapped'
            output_name_fieldmap_mask = self.proc_dir + '/fieldmap_premask'
            output_name_fieldmap_mask_corr = self.proc_dir + '/fieldmap_mask'
            magnitude_name_for_prelude_corr = self.proc_dir + '/masked_abs'

            data = np.multiply(plus_pi_data, np.conj(minus_pi_data))
            fieldmap = np.arctan2(np.imag(data), np.real(data))
            niftiwriter = niftiWriter(procpar, fieldmap)
            niftiwriter.write(output_name_fieldmap)

            print('Unwrapping fieldmap ...')
            # make initial field map
            os.system('prelude -p '+output_name_fieldmap+' -a '+magnitude_name_for_prelude+ \
                        ' -u '+output_name_fieldmap_uw+' --savemask='+output_name_fieldmap_mask)
            # close gaps in mask
            os.system('fslmaths ' + output_name_fieldmap_mask + ' -fillh ' +
                      output_name_fieldmap_mask_corr)
            # make new absolute with mask
            os.system('fslmaths '+magnitude_name_for_prelude+' -mul '+output_name_fieldmap_mask_corr+\
                        ' '+magnitude_name_for_prelude_corr)
            # make final field map
            os.system('prelude -p '+output_name_fieldmap+' -a '+magnitude_name_for_prelude_corr+ \
                        ' -u '+output_name_fieldmap_uw)
            print('Fieldmap done!')
            return
Esempio n. 5
0
def fid2nii(indir,
            out=None,
            saveprocpar=True,
            save_kspace=False,
            save_imgspace=True):

    if not os.path.isdir(indir):
        raise (Exception('Please specify input fid directory'))

    if out == None:
        # if output is not given, take fid as basename for new dir
        out = indir[:-4] + '.nifti/'
        if not os.path.exists(out):
            os.makedirs(out)

    fid = indir + '/fid'
    procpar = indir + '/procpar'
    ppdict = procparReader(procpar).read()
    fid_data, fid_header = fidReader(fid, procpar).read()
    kspacemaker = kSpaceMaker(fid_data, procpar, fid_header)
    kspace = kspacemaker.make()
    imgspace = imgSpaceMaker(kspace, procpar).make()

    kspace_real = []  # put separate channel data into separate lements of list
    kspace_imag = []

    for i in range(len(ppdict['rcvrs'])):
        kspace_real.append(np.real(kspace[i, ...]))
        kspace_imag.append(np.imag(kspace[i, ...]))
        writer1 = niftiWriter(procpar, kspace_real[-1])
        writer1.write(out + 'kspace_real_ch' + str(i))
        writer2 = niftiWriter(procpar, kspace_imag[-1])
        writer2.write(out + 'kspace_imag_ch' + str(i))

    sumimg = np.sum(np.absolute(imgspace), axis=0)
    writer_img = niftiWriter(procpar, sumimg)
    writer_img.write(out + 'imgspace_sum')

    if saveprocpar == True:
        copyfile(procpar, out + '/procpar')
Esempio n. 6
0
    #parser = ArgumentParser()
    #parser.add_argument('inputfile')

    #args = parser.parse_args()

    # test data is kmake_test.nii.gz
    TESTFILE_REAL = 'tempdata/kmake_test_real.nii.gz'
    TESTFILE_IMAG = 'tempdata/kmake_test_imag.nii.gz'

    # TODO
    # for testing add another dim to kspace data to axis0

    TESTPP = 'tempdata/kmake_test.procpar'

    TEST_OUTPUT = 'tempdata/imake_test'

    kspace_real = nib.load(TESTFILE_REAL).get_fdata()
    kspace_imag = nib.load(TESTFILE_IMAG).get_fdata()

    kspace = np.vectorize(complex)(kspace_real, kspace_imag)

    imgspacemaker = imgSpaceMaker(kspace, TESTPP)
    img = imgspacemaker.make()
    print('img shape: ' + str(img.shape))
    img_to_write = np.absolute(img[..., 0])

    niPlotter(img_to_write).plot_slices()

    writer = niftiWriter(TESTPP, img_to_write)
    writer.write(TEST_OUTPUT)
Esempio n. 7
0
          str(f.shape))
    print('dixon.ideal output shape : ' + str(ro.shape) + ' ; ' + str(y.shape))
    abs_ro1 = np.absolute(np.vectorize(complex)(ro[0, ...], ro[1, ...]))
    abs_ro2 = np.absolute(np.vectorize(complex)(ro[2, ...], ro[3, ...]))
    print('abs_ro shape : ' + str(abs_ro1.shape))
    # make ro percentage
    rel_ro1 = np.divide(abs_ro1, abs_ro1 + abs_ro2)
    rel_ro2 = np.divide(abs_ro2, abs_ro1 + abs_ro2)

    # plotting stuff
    #fig, axes = plt.subplots(4,1)

    #ro_plot = []
    # writing to nifti

    writer1 = niftiWriter(procpar, rel_ro1)
    writer2 = niftiWriter(procpar, rel_ro2)
    writer3 = niftiWriter(procpar, f)
    writer4 = niftiWriter(procpar, phasemap1)
    writer5 = niftiWriter(procpar, phasemap2)
    writer6 = niftiWriter(procpar, phasemap3)
    writer7 = niftiWriter(procpar, magnitude1)
    writer8 = niftiWriter(procpar, magnitude2)
    writer9 = niftiWriter(procpar, magnitude3)
    writer10 = niftiWriter(procpar, y[0])

    writer1.write('water')
    writer2.write('fat')
    writer3.write('fieldmap')
    writer4.write('phase1')
    writer5.write('phase2')
Esempio n. 8
0
        return kspace


if __name__ == '__main__':

    parser = ArgumentParser()
    parser.add_argument('input_fid_dir')  # just give the whole directory
    args = parser.parse_args()
    fid = args.input_fid_dir + '/fid'
    procpar = args.input_fid_dir + '/procpar'
    fidrdr = fidReader(fid, procpar)
    data, fidheader = fidrdr.read()
    fidrdr.print_header()
    kspacemaker = kSpaceMaker(data, procpar, fidheader)
    #kspacemaker.print_fid_header()
    kspace = kspacemaker.make()

    kspace_real = np.real(kspace[0, ...])
    kspace_imag = np.imag(kspace[0, ...])

    writer_re = niftiWriter(procpar, kspace_real)
    writer_re.write('tempdata/kmake_test_real')
    writer_im = niftiWriter(procpar, kspace_imag)
    writer_im.write('tempdata/kmake_test_imag')

    plotter = niPlotter(kspace_real)
    plotter.plot_slices()

    os.system('cp ' + str(procpar) + ' tempdata/kmake_test.procpar')
Esempio n. 9
0
    def run(self):
        def make_fieldmap(minus_pi_data, plus_pi_data, procpar):
            """
            Make phase correction factor from minus Pi shifted and plus Pi shifted data. Does 
            unwrapping with prelude in two steps: first step is preliminary field map with output
            mask, then this output mask is holefilled and the unwrapping is done again
            """
            output_name_fieldmap = self.proc_dir + '/fieldmap_wrapped'
            output_name_fieldmap_uw = self.proc_dir + '/fieldmap_unwrapped'
            output_name_fieldmap_mask = self.proc_dir + '/fieldmap_premask'
            output_name_fieldmap_mask_corr = self.proc_dir + '/fieldmap_mask'
            magnitude_name_for_prelude_corr = self.proc_dir + '/masked_abs'

            data = np.multiply(plus_pi_data, np.conj(minus_pi_data))
            fieldmap = np.arctan2(np.imag(data), np.real(data))
            niftiwriter = niftiWriter(procpar, fieldmap)
            niftiwriter.write(output_name_fieldmap)

            print('Unwrapping fieldmap ...')
            # make initial field map
            os.system('prelude -p '+output_name_fieldmap+' -a '+magnitude_name_for_prelude+ \
                        ' -u '+output_name_fieldmap_uw+' --savemask='+output_name_fieldmap_mask)
            # close gaps in mask
            os.system('fslmaths ' + output_name_fieldmap_mask + ' -fillh ' +
                      output_name_fieldmap_mask_corr)
            # make new absolute with mask
            os.system('fslmaths '+magnitude_name_for_prelude+' -mul '+output_name_fieldmap_mask_corr+\
                        ' '+magnitude_name_for_prelude_corr)
            # make final field map
            os.system('prelude -p '+output_name_fieldmap+' -a '+magnitude_name_for_prelude_corr+ \
                        ' -u '+output_name_fieldmap_uw)
            print('Fieldmap done!')
            return

        def inverse_fourier_transform2D(kspace_data):
            # changed axes 2,3
            print('pproc kdata shape {}'.format(kspace_data.shape))
            kspace_data = np.fft.fftshift(kspace_data, axes=(0, 1))
            imgspace_data = np.fft.ifft2(kspace_data,
                                         axes=(0, 1),
                                         norm='ortho')
            imgspace_data = np.fft.ifftshift(imgspace_data, axes=(0, 1))
            return imgspace_data

        if not os.path.exists(self.proc_dir):
            os.makedirs(self.proc_dir)

        if not self.preproc_from_fid:

            open(self.preproc_data, 'w').close()

            procpar = []
            roshift = []
            for item in self.combined_names:
                # combined_names is a list of lists containing real and imaginary parts
                procpar.append(item[0] + '/procpar')
                ppr = procparReader(item[0] + '/procpar')
                shift = int(float(ppr.read()['roshift']) *
                            1000000)  # write it in microsec for naming
                roshift.append(float(ppr.read()['roshift']))
                hdr, data_re = fdfReader(item[0], 'out').read()
                hdr, data_im = fdfReader(item[1], 'out').read()
                kspace_data = np.vectorize(complex)(data_re, data_im)
                imgspace_data = inverse_fourier_transform2D(kspace_data)
                magnitude_data = np.absolute(imgspace_data)
                phase_data = np.arctan2(np.imag(imgspace_data),
                                        np.real(imgspace_data))

                niftiwriter = niftiWriter(item[0] + '/procpar', magnitude_data)
                output_name_magnitude = self.proc_dir + '/' + self.pslabel + '_' + str(
                    shift) + 'us_mag'
                niftiwriter.write(output_name_magnitude)
                niftiwriter = niftiWriter(item[1] + '/procpar', phase_data)
                output_name_phase = self.proc_dir + '/' + self.pslabel + '_' + str(
                    shift) + 'us_ph'
                niftiwriter.write(output_name_phase)
                output_name_unwrapped = self.proc_dir + '/' + self.pslabel + '_' + str(
                    shift) + 'us_unwrapped_ph'

                if float(ppr.read()['roshift']) == 0.00037:
                    plus_pi_data = imgspace_data
                if float(ppr.read()['roshift']) == -0.00037:
                    minus_pi_data = imgspace_data
                if float(ppr.read()['roshift']) == 0:
                    magnitude_name_for_prelude = output_name_magnitude
                    copyfile(item[0] + '/procpar', self.proc_dir + '/procpar')

                if self.unwrap_all:
                    print('Unwrapping phasemaps ...')
                    os.system('prelude -p '+output_name_phase+' -a '+output_name_magnitude+ \
                                ' -u '+output_name_unwrapped)
                with open(self.preproc_data, 'a') as openfile:
                    line = str(float(ppr.read()['roshift']))+','\
                            +output_name_magnitude+','\
                            +output_name_phase+'\n'
                    openfile.write(line)

        if self.preproc_from_fid:

            pass

        if self.make_fieldmap:

            make_fieldmap(minus_pi_data, plus_pi_data, procpar[0])

        return