net.train() # TODO: Create optimizer for network parameters from conv2 onwards # (do not optimize conv1) conv_layer_numbers = [0] for elt in conv_layer_numbers: net.features[elt].weight.requires_grad = False net.features[elt].bias.requires_grad = False '''for param in net.parameters(): print(param.shape) print(param.requires_grad) #Freeze the features part of the network print("==================================================================================")''' optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=lr, momentum=momentum, weight_decay=weight_decay) if not os.path.exists(output_dir): os.makedirs(output_dir) if use_tensorboard: import time timestr = time.strftime("%Y%m%d-%H%M%S") save_path = "runs/" + timestr + '/' writer = SummaryWriter(save_path) if use_visdom: import visdom
print('Did not find {}'.format(name)) continue # Move model to GPU and set train mode net.cuda() net.train() #pdb.set_trace() log_dir = '/home/bjasani/Desktop/CMU_HW/VLR/HW2/hw2-release/code/tf_logs/faster_rcnn' logger = Logger(log_dir, name='faster_rcnn_6_ysh') vis = visdom.Visdom(port='8106') vis.text('Hello, world!') # Create optimizer for network parameters params = list(net.parameters()) optimizer = torch.optim.SGD(params[2:], lr=lr, momentum=momentum, weight_decay=weight_decay) if not os.path.exists(output_dir): os.makedirs(output_dir) # training train_loss = 0 tp, tf, fg, bg = 0., 0., 0, 0 step_cnt = 0 re_cnt = False t = Timer() t.tic()
print('Did not find {}'.format(name)) continue log_path = os.path.join("./wsddn_log/", datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) os.makedirs(log_path) logger = Logger(log_path, 'http://localhost', '8097', use_visdom=True) # Move model to GPU and set train mode net.load_state_dict(own_state) net.cuda() net.train() # TODO: Create optimizer for network parameters from conv2 onwards # (do not optimize conv1) opt_param = list(net.parameters()) optimizer = torch.optim.SGD(opt_param[2:], lr=lr, momentum=momentum, weight_decay=weight_decay) if not os.path.exists(output_dir): os.makedirs(output_dir) # training firstFlag = True train_loss = 0 tp, tf, fg, bg = 0., 0., 0, 0 step_cnt = 0 re_cnt = False t = Timer()