Esempio n. 1
0
    def prep_steps(self, *, yearmon: str) -> List[Step]:
        """
        Prep steps are data preparation tasks that are executed once per model iteration.
        They may include downloading, unpackaging, aggregation, or conversion of data inputs.

        :param yearmon: yearmon of model iteration
        :return: a list of Steps
        """
        steps = []

        year, month = dates.parse_yearmon(yearmon)

        # Extract netCDF of monthly precipitation from full binary file
        steps.append(
            Step(
                targets=self.precip_monthly(yearmon=yearmon).file,
                dependencies=self.full_precip_file(),
                commands=[[
                    os.path.join('{BINDIR}', 'utils',
                                 'noaa_global_leaky_bucket',
                                 'read_binary_grid.R'),
                    '--input',
                    self.full_precip_file(),
                    '--update_url',
                    'ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly/gridded_binary/p.long',
                    '--output',
                    self.precip_monthly(yearmon=yearmon).file,
                    '--var',
                    'P',
                    '--yearmon',
                    yearmon,
                ]]))

        # Extract netCDF of monthly temperature from full binary file
        steps.append(
            Step(
                targets=self.temp_monthly(yearmon=yearmon).file,
                dependencies=self.full_temp_file(),
                commands=[[
                    os.path.join('{BINDIR}', 'utils',
                                 'noaa_global_leaky_bucket',
                                 'read_binary_grid.R'), '--input',
                    self.full_temp_file(), '--update_url',
                    'ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly/gridded_binary/t.long',
                    '--output',
                    self.temp_monthly(yearmon=yearmon).file, '--var', 'T',
                    '--yearmon', yearmon
                ]]))

        if year >= 1979:
            steps += cpc_daily_precipitation.download_monthly_precipitation(
                yearmon=yearmon,
                workdir=os.path.join(self.source, 'NCEP', 'daily_precip'),
                wetdays_fname=self.p_wetdays(yearmon=yearmon).file)

        return steps
Esempio n. 2
0
    def test_step_comments(self):
        s = Step(targets='a',
                 dependencies=[],
                 commands=[['touch', 'a']],
                 comment='Step to build a')

        self.assertEqual(write_step(s).split('\n')[0], '# Step to build a')
Esempio n. 3
0
    def test_tab_indentation(self):
        # Make requires that all command lines be tab-indented
        s = Step(targets=['a', 'b'],
                 dependencies=['c', 'd'],
                 commands=[['echo', 'c', '>', 'a'], ['echo', 'd', '>', 'b']])

        lines = write_step(s).strip().split('\n')
        for line in lines[1:]:
            self.assertEqual(line[0], '\t')
Esempio n. 4
0
 def crop_to_nldas(file_in, file_out):
     return [
         Step(targets=file_out,
              dependencies=file_in,
              commands=[[
                  'gdalwarp', '-s_srs', 'EPSG:4326', '-t_srs', 'EPSG:4326',
                  '-of', 'GTiff', '-te', '-125.0005', '25.0005', '-67.0005',
                  '53.0005', '-co', 'COMPRESS=deflate', file_in, file_out
              ]])
     ]
Esempio n. 5
0
    def test_target_directories_created_but_only_once(self):
        s = Step(
            targets=['/tmp/fizz/fuzz/ok.txt', '/src/junk.h', '/src/junk.c'],
            dependencies=[],
            commands=[['do_something']])

        commands = unformat(write_step(s)).split('\n')[1:]

        self.assertTrue('mkdir -p /src /tmp/fizz/fuzz' in commands)
        self.assertEqual(2, len(commands))
Esempio n. 6
0
    def compute_fit_hindcast(self, varname: str, month: int,
                             lead: int) -> List[Step]:
        assert varname in WSIM_FORCING_VARIABLES

        start = self.min_hindcast_year + 1
        stop = self.max_hindcast_year - 1

        # The lead months will be computed by WSIM, based on the difference between
        # the WSIM data version and target month. Since the NMME forecast reference
        # time is one month greater than the WSIM data version, the hindcast fits
        # at an N-month lead need to be computed from NMME data with an (N-1)-month
        # lead.
        #
        # As an example, a WSIM workflow generated for data version 201901 will
        # will request a corrected NMME forecast targeting 201904, which it will
        # consider to be a 3-month lead time. The NMME forecast accessed by
        # WSIM data version 201901 will have an NMME reference time of 201902.
        # So for the context of the fit_nmme_hindcasts.R script, the raw
        # forecast will have a lead time of two months.

        output = self.fit_retro(var=varname,
                                target_month=month,
                                lead_months=lead)

        return [
            Step(
                targets=output,
                dependencies=self.hindcast(varname),
                commands=[[
                    os.path.join('{BINDIR}', 'utils', 'nmme',
                                 'fit_nmme_hindcasts.R'),
                    '--distribution',
                    'gev',
                    '--input',
                    self.hindcast(varname),
                    '--varname',
                    varname,
                    '--min_year',
                    str(start),
                    '--max_year',
                    str(stop),
                    '--target_month',
                    str(month),
                    '--output',
                    output,
                    '--lead',
                    str(
                        lead - 1
                    )  # <--- IMPORTANT! Subtract 1 from lead to account for
                    #      difference between WSIM data version / "yearmon"
                    #      and NMME forecast "reference time".
                ]])
        ]
Esempio n. 7
0
    def test_pattern_rule_conversion(self):
        s = Step(targets=['a.txt', 'b.txt'],
                 dependencies='source.txt',
                 commands=[['process', 'source.txt', 'a.txt', 'b.txt']])

        declaration_line, command_line = write_step(s).split('\n')[:2]

        self.assertTrue('a%txt' in declaration_line)
        self.assertTrue('b%txt' in declaration_line)
        self.assertTrue('source%txt' in declaration_line)

        self.assertTrue('a.txt' in command_line)
        self.assertTrue('b.txt' in command_line)
        self.assertTrue('source.txt' in command_line)
Esempio n. 8
0
 def download_monthly_temp_and_precip_files(self) -> List[Step]:
     """
     Steps to download (or update) the t.long and p.long full data sets from NCEP.
     Because this is a single step (no matter which yearmon we're running), we can't
     include it in prep_steps below.
     """
     return [
         Step(
             targets=self.full_temp_file(),
             dependencies=[],
             commands=[[
                 'wget', '--continue', '--directory-prefix',
                 os.path.join(self.source, 'NCEP'),
                 'ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly/gridded_binary/t.long'
             ]]),
         Step(
             targets=self.full_precip_file(),
             dependencies=[],
             commands=[[
                 'wget', '--continue', '--directory-prefix',
                 os.path.join(self.source, 'NCEP'),
                 'ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly/gridded_binary/p.long'
             ]])
     ]
Esempio n. 9
0
    def prep_steps(self, *, yearmon: str, target: str,
                   member: str) -> List[Step]:
        steps = []

        _, nmme_month = dates.parse_yearmon(wsim_to_nmme_yearmon(yearmon))

        # Hack to only download these once although they are required for
        # all members / forecast targets
        if int(member) == 1 and target == dates.add_months(yearmon, 1):
            steps += self.download_realtime_anomalies(
                nmme_yearmon=wsim_to_nmme_yearmon(yearmon))

        output = self.forecast_raw(yearmon=yearmon,
                                   target=target,
                                   member=member).split('::')[0]

        steps.append(
            Step(targets=output,
                 dependencies=[
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='T'),
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='Pr'),
                     self.forecast_clim(nmme_month=nmme_month, varname='T'),
                     self.forecast_clim(nmme_month=nmme_month, varname='Pr')
                 ],
                 commands=[[
                     os.path.join('{BINDIR}', 'utils', 'nmme',
                                  'extract_nmme_forecast.R'), '--clim_precip',
                     self.forecast_clim(nmme_month=nmme_month,
                                        varname='Pr'), '--clim_temp',
                     self.forecast_clim(nmme_month=nmme_month, varname='T'),
                     '--anom_precip',
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='Pr'), '--anom_temp',
                     self.forecast_anom(
                         nmme_yearmon=wsim_to_nmme_yearmon(yearmon),
                         varname='T'), '--member', member, '--lead',
                     str(
                         dates.get_lead_months(wsim_to_nmme_yearmon(yearmon),
                                               target)), '--output', output
                 ]]))

        return steps
Esempio n. 10
0
    def test_variable_substitution(self):
        s = Step(
            targets=['{ROOT_DIR}/fizz'],
            dependencies=['{SOURCE_DIR}/buzz'],
            commands=[['echo', '{SOURCE_DIR}/buzz', '>', '{ROOT_DIR}/fizz']])

        step_text = write_step(
            s, dict(ROOT_DIR='/tmp/root', SOURCE_DIR='/tmp/src'))

        self.assertTrue('/tmp/root/fizz' in step_text)
        self.assertTrue('/tmp/src/buzz' in step_text)

        self.assertFalse('ROOT_DIR' in step_text)
        self.assertFalse('SRC_DIR' in step_text)

        self.assertFalse('{' in step_text)
        self.assertFalse('}' in step_text)
Esempio n. 11
0
    def test_commands_arguments_aligned(self):
        s = Step(targets='outputs/results.nc',
                 dependencies='inputs.nc',
                 commands=[[
                     'process.py', '--input', 'inputs.nc', '--output',
                     'outputs/results.nc', '--compress', '3', '--nohistory'
                 ]])

        command_lines = [
            line.strip() for line in write_step(s).split('\n')
            if line.startswith('\t')
        ]

        self.assertEqual(7, len(command_lines))
        self.assertTrue(
            all(
                line.startswith('mkdir') or line.startswith('process.py')
                or line.startswith('-') for line in command_lines))
Esempio n. 12
0
    def prep_steps(self, *, yearmon: str, target: str,
                   member: str) -> List[Step]:
        outfile = self.forecast_raw(yearmon=yearmon,
                                    member=member,
                                    target=target).split('::')[0]
        infile = self.forecast_grib(timestamp=member, target=target)

        return [
            # Download the GRIB, if needed
            Step(targets=self.forecast_grib(timestamp=member, target=target),
                 dependencies=[],
                 commands=[[
                     os.path.join('{BINDIR}', 'utils', 'noaa_cfsv2_forecast',
                                  'download_cfsv2_forecast.py'), '--timestamp',
                     member, '--target', target, '--output_dir',
                     self.grib_dir(timestamp=member)
                 ]]),
            # Convert the forecast data from GRIB to netCDF
            commands.forecast_convert(infile, outfile)
        ]
Esempio n. 13
0
    def download_hindcasts(self):
        steps = []

        iri_url = 'http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/.{model}/.HINDCAST/.MONTHLY/.{varname}/dods'

        for varname in WSIM_FORCING_VARIABLES:
            steps.append(
                Step(
                    targets=self.hindcast(varname),
                    dependencies=[],
                    commands=[[
                        'nccopy',
                        '-7',  # netCDF-4 classic
                        '-d',
                        '1',  # level-1 deflate,
                        q(
                            iri_url.format(model=self.model_name,
                                           varname=IRI_VARS[varname])),
                        self.hindcast(varname)
                    ]]))

        return steps
Esempio n. 14
0
    def download_hindcasts(self, target_month: int, lead: int) -> List[Step]:
        steps = []

        for timestamp, target in self.available_hindcasts(target_month, lead):
            grib_file = self.hindcast_grib(timestamp=timestamp, target=target)
            grib_dir = os.path.dirname(grib_file)

            netcdf_file = self.hindcast_raw(timestamp=timestamp, target=target)

            steps.append(
                Step(targets=grib_file,
                     dependencies=[],
                     commands=[[
                         os.path.join('{BINDIR}', 'utils',
                                      'noaa_cfsv2_forecast',
                                      'download_cfsv2_forecast.py'),
                         '--timestamp', timestamp, '--target', target,
                         '--output_dir', grib_dir
                     ]]))

            steps.append(commands.forecast_convert(grib_file, netcdf_file))

        return steps
Esempio n. 15
0
    def test_variable_substitution_error(self):
        s = Step(targets='a',
                 dependencies='b',
                 commands=[['{PROGRAM}', 'a', 'b']])

        self.assertRaises(KeyError, lambda: write_step(s, dict(PROG='q')))