} pylab.rcParams['figure.figsize'] = (8.0, 10.0) show_maskobb = False anno_file_name = ['small', 'dota-v1.5'] img_dir = './data/{}/{}/images'.format(anno_file_name[0], anno_file_name[1]) anno_dir = './data/{}/{}/labels'.format(anno_file_name[0], anno_file_name[1]) for anno_name in os.listdir(anno_dir): file_name = os.path.splitext(os.path.basename(anno_name))[0] anno_file = os.path.join(anno_dir, anno_name) objects = wwtool.simpletxt_parse(anno_file) image_name = os.path.join(img_dir, file_name + '.png') im = cv2.imread(image_name) bboxes = [] labels = [] for obj in objects: bbox = obj['bbox'] label = obj['label'] bboxes.append(bbox) labels.append({label: coco_class[label]}) wwtool.imshow_bboxes(im, bboxes, labels=labels,
import os import wwtool label_fold = './data/stanford_campus/v1/trainval_test/labels' image_fold = './data/stanford_campus/v1/trainval_test/images' for label_name in sorted(os.listdir(label_fold)): print(label_name) label_file = os.path.join(label_fold, label_name) image_file = os.path.join(image_fold, label_name.split('.')[0] + '.png') objects = wwtool.simpletxt_parse(label_file) bbox, label = [single_object['bbox'] for single_object in objects ], [single_object['label'] for single_object in objects] wwtool.imshow_bboxes(image_file, bbox)
if __name__ == "__main__": image_format = '.png' origin_image_path = './data/visdrone/v1/trainval/images' origin_label_path = './data/visdrone/v1/trainval/labels' filtered_image_path = './data/visdrone/v1/trainval_filtered/images' filtered_label_path = './data/visdrone/v1/trainval_filtered/labels' wwtool.mkdir_or_exist(filtered_image_path) wwtool.mkdir_or_exist(filtered_label_path) filter_count = 1 progress_bar = mmcv.ProgressBar(len(os.listdir(origin_label_path))) for label_name in os.listdir(origin_label_path): image_objects = wwtool.simpletxt_parse( os.path.join(origin_label_path, label_name)) filtered_objects = [] for image_object in image_objects: if convert_classes[origin_class[image_object['label']]] == None: filter_count += 1 continue else: image_object['label'] = convert_classes[origin_class[ image_object['label']]] filtered_objects.append(image_object) if len(filtered_objects) > 0: img = cv2.imread( os.path.join(origin_image_path, os.path.splitext(label_name)[0] + image_format)) save_image_file = os.path.join(