Esempio n. 1
0
def test_interpolate_dataset(ds):
    actual = ds.interpolate_na(dim='time')
    # no missing values in var1
    assert actual['var1'].count('time') == actual.dims['time']

    # var2 should be the same as it was
    assert_array_equal(actual['var2'], ds['var2'])
Esempio n. 2
0
def test_interpolate_dataset(ds):
    actual = ds.interpolate_na(dim="time")
    # no missing values in var1
    assert actual["var1"].count("time") == actual.dims["time"]

    # var2 should be the same as it was
    assert_array_equal(actual["var2"], ds["var2"])
Esempio n. 3
0
def test_interpolate_dataset(ds):
    actual = ds.interpolate_na(dim='time')
    # no missing values in var1
    assert actual['var1'].count('time') == actual.dims['time']

    # var2 should be the same as it was
    assert_array_equal(actual['var2'], ds['var2'])
Esempio n. 4
0
def test_ffill_limit():
    da = xr.DataArray(
        [0, np.nan, np.nan, np.nan, np.nan, 3, 4, 5, np.nan, 6, 7],
        dims='time')
    result = da.ffill('time')
    expected = xr.DataArray([0, 0, 0, 0, 0, 3, 4, 5, 5, 6, 7], dims='time')
    assert_array_equal(result, expected)

    result = da.ffill('time', limit=1)
    expected = xr.DataArray([0, 0, np.nan, np.nan, np.nan, 3, 4, 5, 5, 6, 7],
                            dims='time')
Esempio n. 5
0
def test_ffill_limit():
    da = xr.DataArray(
        [0, np.nan, np.nan, np.nan, np.nan, 3, 4, 5, np.nan, 6, 7],
        dims='time')
    result = da.ffill('time')
    expected = xr.DataArray([0, 0, 0, 0, 0, 3, 4, 5, 5, 6, 7], dims='time')
    assert_array_equal(result, expected)

    result = da.ffill('time', limit=1)
    expected = xr.DataArray(
        [0, 0, np.nan, np.nan, np.nan, 3, 4, 5, 5, 6, 7], dims='time')
Esempio n. 6
0
def test_get_loc(date_type, index):
    result = index.get_loc('0001')
    expected = [0, 1]
    assert_array_equal(result, expected)

    result = index.get_loc(date_type(1, 2, 1))
    expected = 1
    assert result == expected

    result = index.get_loc('0001-02-01')
    expected = 1
    assert result == expected
Esempio n. 7
0
def test_get_loc(date_type, index):
    result = index.get_loc('0001')
    expected = [0, 1]
    assert_array_equal(result, expected)

    result = index.get_loc(date_type(1, 2, 1))
    expected = 1
    assert result == expected

    result = index.get_loc('0001-02-01')
    expected = 1
    assert result == expected
Esempio n. 8
0
def test_interpolators_complex_out_of_bounds():
    """Ensure complex nans are used for complex data"""

    xi = np.array([-1, 0, 1, 2, 5], dtype=np.float64)
    yi = np.exp(1j * xi)
    x = np.array([-2, 1, 6], dtype=np.float64)

    expected = np.array(
        [np.nan + np.nan * 1j, np.exp(1j), np.nan + np.nan * 1j], dtype=yi.dtype
    )

    for method, interpolator in [
        ("linear", NumpyInterpolator),
        ("linear", ScipyInterpolator),
    ]:

        f = interpolator(xi, yi, method=method)
        actual = f(x)
        assert_array_equal(actual, expected)
Esempio n. 9
0
    def test_rolling_wrapped_bottleneck(self, da, name, center, min_periods) -> None:
        bn = pytest.importorskip("bottleneck", minversion="1.1")

        # Test all bottleneck functions
        rolling_obj = da.rolling(time=7, min_periods=min_periods)

        func_name = f"move_{name}"
        actual = getattr(rolling_obj, name)()
        expected = getattr(bn, func_name)(
            da.values, window=7, axis=1, min_count=min_periods
        )
        assert_array_equal(actual.values, expected)

        with pytest.warns(DeprecationWarning, match="Reductions are applied"):
            getattr(rolling_obj, name)(dim="time")

        # Test center
        rolling_obj = da.rolling(time=7, center=center)
        actual = getattr(rolling_obj, name)()["time"]
        assert_equal(actual, da["time"])
Esempio n. 10
0
    def test_rolling_wrapped_bottleneck(
        self, ds, name, center, min_periods, key
    ) -> None:
        bn = pytest.importorskip("bottleneck", minversion="1.1")

        # Test all bottleneck functions
        rolling_obj = ds.rolling(time=7, min_periods=min_periods)

        func_name = f"move_{name}"
        actual = getattr(rolling_obj, name)()
        if key == "z1":  # z1 does not depend on 'Time' axis. Stored as it is.
            expected = ds[key]
        elif key == "z2":
            expected = getattr(bn, func_name)(
                ds[key].values, window=7, axis=0, min_count=min_periods
            )
        else:
            raise ValueError
        assert_array_equal(actual[key].values, expected)

        # Test center
        rolling_obj = ds.rolling(time=7, center=center)
        actual = getattr(rolling_obj, name)()["time"]
        assert_equal(actual, ds["time"])
Esempio n. 11
0
def test_cftimeindex_field_accessors(index, field, expected):
    result = getattr(index, field)
    assert_array_equal(result, expected)
Esempio n. 12
0
def test_cftimeindex_days_in_month_accessor(index):
    result = index.days_in_month
    expected = [date.daysinmonth for date in index]
    assert_array_equal(result, expected)
Esempio n. 13
0
def test_cftimeindex_dayofweek_accessor(index):
    result = index.dayofweek
    expected = [date.dayofwk for date in index]
    assert_array_equal(result, expected)
Esempio n. 14
0
def test_cftimeindex_dayofweek_accessor(index):
    result = index.dayofweek
    expected = [date.dayofwk for date in index]
    assert_array_equal(result, expected)
Esempio n. 15
0
def test_cftimeindex_field_accessors(index, field, expected):
    result = getattr(index, field)
    assert_array_equal(result, expected)