Esempio n. 1
0
 def test_inv_y(self):
     ds1, ds2 = _get_inv_y_datasets()
     bounds = get_dataset_geometry(ds1)
     self.assertEqual(shapely.geometry.box(-25.0, -15.0, 15.0, 15.0),
                      bounds)
     bounds = get_dataset_geometry(ds2)
     self.assertEqual(shapely.geometry.box(-25.0, -15.0, 15.0, 15.0),
                      bounds)
Esempio n. 2
0
 def test_antimeridian(self):
     ds1, ds2 = _get_antimeridian_datasets()
     bounds = get_dataset_geometry(ds1)
     self.assertEqual(
         shapely.geometry.MultiPolygon(polygons=[
             shapely.geometry.box(165.0, -15.0, 180.0, 15.0),
             shapely.geometry.box(-180.0, -15.0, -155.0, 15.0)
         ]), bounds)
     bounds = get_dataset_geometry(ds2)
     self.assertEqual(
         shapely.geometry.MultiPolygon(polygons=[
             shapely.geometry.box(165.0, -15.0, 180.0, 15.0),
             shapely.geometry.box(-180.0, -15.0, -155.0, 15.0)
         ]), bounds)
Esempio n. 3
0
def find_dataset_places(ctx: ServiceContext,
                        place_group_id: str,
                        ds_id: str,
                        query_expr: Any = None,
                        comb_op: str = "and") -> GeoJsonFeatureCollection:
    dataset = ctx.get_dataset(ds_id)
    query_geometry = get_dataset_geometry(dataset)
    return _find_places(ctx,
                        place_group_id,
                        query_geometry=query_geometry,
                        query_expr=query_expr,
                        comb_op=comb_op)
Esempio n. 4
0
def get_time_series(cube: xr.Dataset,
                    geometry: GeometryLike = None,
                    var_names: Sequence[str] = None,
                    start_date: Date = None,
                    end_date: Date = None,
                    include_count: bool = False,
                    include_stdev: bool = False,
                    use_groupby: bool = False,
                    cube_asserted: bool = False) -> Optional[xr.Dataset]:
    """
    Get a time series dataset from a data *cube*.

    *geometry* may be provided as a (shapely) geometry object, a valid GeoJSON object, a valid WKT string,
    a sequence of box coordinates (x1, y1, x2, y2), or point coordinates (x, y). If *geometry* covers an area,
    i.e. is not a point, the function aggregates the variables to compute a mean value and if desired,
    the number of valid observations and the standard deviation.

    *start_date* and *end_date* may be provided as a numpy.datetime64 or an ISO datetime string.

    Returns a time-series dataset whose data variables have a time dimension but no longer have spatial dimensions,
    hence the resulting dataset's variables will only have N-2 dimensions.
    A global attribute ``max_number_of_observations`` will be set to the maximum number of observations
    that could have been made in each time step.
    If the given *geometry* does not overlap the cube's boundaries, or if not output variables remain,
    the function returns ``None``.

    :param cube: The xcube dataset
    :param geometry: Optional geometry
    :param var_names: Optional sequence of names of variables to be included.
    :param start_date: Optional start date.
    :param end_date: Optional end date.
    :param include_count: Whether to include the number of valid observations for each time step.
           Ignored if geometry is a point.
    :param include_stdev: Whether to include standard deviation for each time step.
           Ignored if geometry is a point.
    :param use_groupby: Use group-by operation. May increase or decrease runtime performance and/or memory consumption.
    :param cube_asserted:  If False, *cube* will be verified, otherwise it is expected to be a valid cube.
    :return: A new dataset with time-series for each variable.
    """

    if not cube_asserted:
        assert_cube(cube)

    geometry = convert_geometry(geometry)

    dataset = select_variables_subset(cube, var_names)
    if len(dataset.data_vars) == 0:
        return None

    if start_date is not None or end_date is not None:
        # noinspection PyTypeChecker
        dataset = dataset.sel(time=slice(start_date, end_date))

    if isinstance(geometry, shapely.geometry.Point):
        bounds = get_dataset_geometry(dataset)
        if not bounds.contains(geometry):
            return None
        dataset = dataset.sel(lon=geometry.x, lat=geometry.y, method='Nearest')
        return dataset.assign_attrs(max_number_of_observations=1)

    if geometry is not None:
        dataset = mask_dataset_by_geometry(dataset,
                                           geometry,
                                           save_geometry_mask='__mask__')
        if dataset is None:
            return None
        mask = dataset['__mask__']
        max_number_of_observations = np.count_nonzero(mask)
        dataset = dataset.drop('__mask__')
    else:
        max_number_of_observations = dataset.lat.size * dataset.lon.size

    ds_count = None
    ds_stdev = None
    if use_groupby:
        time_group = dataset.groupby('time')
        ds_mean = time_group.mean(skipna=True, dim=xr.ALL_DIMS)
        if include_count:
            ds_count = time_group.count(dim=xr.ALL_DIMS)
        if include_stdev:
            ds_stdev = time_group.std(skipna=True, dim=xr.ALL_DIMS)
    else:
        ds_mean = dataset.mean(dim=('lat', 'lon'), skipna=True)
        if include_count:
            ds_count = dataset.count(dim=('lat', 'lon'))
        if include_stdev:
            ds_stdev = dataset.std(dim=('lat', 'lon'), skipna=True)

    if ds_count is not None:
        ds_count = ds_count.rename(
            name_dict=dict({v: f"{v}_count"
                            for v in ds_count.data_vars}))

    if ds_stdev is not None:
        ds_stdev = ds_stdev.rename(
            name_dict=dict({v: f"{v}_stdev"
                            for v in ds_stdev.data_vars}))

    if ds_count is not None and ds_stdev is not None:
        ts_dataset = xr.merge([ds_mean, ds_stdev, ds_count])
    elif ds_count is not None:
        ts_dataset = xr.merge([ds_mean, ds_count])
    elif ds_stdev is not None:
        ts_dataset = xr.merge([ds_mean, ds_stdev])
    else:
        ts_dataset = ds_mean

    ts_dataset = ts_dataset.assign_attrs(
        max_number_of_observations=max_number_of_observations)

    return ts_dataset
Esempio n. 5
0
def get_time_series(cube: xr.Dataset,
                    geometry: GeometryLike = None,
                    var_names: Sequence[str] = None,
                    start_date: Date = None,
                    end_date: Date = None,
                    agg_methods: Union[str, Sequence[str],
                                       AbstractSet[str]] = AGG_MEAN,
                    include_count: bool = False,
                    include_stdev: bool = False,
                    use_groupby: bool = False,
                    cube_asserted: bool = False) -> Optional[xr.Dataset]:
    """
    Get a time series dataset from a data *cube*.

    *geometry* may be provided as a (shapely) geometry object, a valid GeoJSON object, a valid WKT string,
    a sequence of box coordinates (x1, y1, x2, y2), or point coordinates (x, y). If *geometry* covers an area,
    i.e. is not a point, the function aggregates the variables to compute a mean value and if desired,
    the number of valid observations and the standard deviation.

    *start_date* and *end_date* may be provided as a numpy.datetime64 or an ISO datetime string.

    Returns a time-series dataset whose data variables have a time dimension but no longer have spatial dimensions,
    hence the resulting dataset's variables will only have N-2 dimensions.
    A global attribute ``max_number_of_observations`` will be set to the maximum number of observations
    that could have been made in each time step.
    If the given *geometry* does not overlap the cube's boundaries, or if not output variables remain,
    the function returns ``None``.

    :param cube: The xcube dataset
    :param geometry: Optional geometry
    :param var_names: Optional sequence of names of variables to be included.
    :param start_date: Optional start date.
    :param end_date: Optional end date.
    :param agg_methods: Aggregation methods. May be single string or sequence of strings. Possible values are
           'mean', 'median', 'min', 'max', 'std', 'count'. Defaults to 'mean'.
           Ignored if geometry is a point.
    :param include_count: Deprecated. Whether to include the number of valid observations for each time step.
           Ignored if geometry is a point.
    :param include_stdev: Deprecated. Whether to include standard deviation for each time step.
           Ignored if geometry is a point.
    :param use_groupby: Use group-by operation. May increase or decrease runtime performance and/or memory consumption.
    :param cube_asserted:  If False, *cube* will be verified, otherwise it is expected to be a valid cube.
    :return: A new dataset with time-series for each variable.
    """

    if not cube_asserted:
        assert_cube(cube)

    geometry = convert_geometry(geometry)

    agg_methods = normalize_agg_methods(agg_methods)
    if include_count:
        warnings.warn("keyword argument 'include_count' has been deprecated, "
                      f"use 'agg_methods=[{AGG_COUNT!r}, ...]' instead")
        agg_methods.add(AGG_COUNT)
    if include_stdev:
        warnings.warn("keyword argument 'include_stdev' has been deprecated, "
                      f"use 'agg_methods=[{AGG_STD!r}, ...]' instead")
        agg_methods.add(AGG_STD)

    dataset = select_variables_subset(cube, var_names)
    if len(dataset.data_vars) == 0:
        return None

    if start_date is not None or end_date is not None:
        # noinspection PyTypeChecker
        dataset = dataset.sel(time=slice(start_date, end_date))

    if isinstance(geometry, shapely.geometry.Point):
        bounds = get_dataset_geometry(dataset)
        if not bounds.contains(geometry):
            return None
        dataset = dataset.sel(lon=geometry.x, lat=geometry.y, method='Nearest')
        return dataset.assign_attrs(max_number_of_observations=1)

    if geometry is not None:
        dataset = mask_dataset_by_geometry(dataset,
                                           geometry,
                                           save_geometry_mask='__mask__')
        if dataset is None:
            return None
        mask = dataset['__mask__']
        max_number_of_observations = np.count_nonzero(mask)
        dataset = dataset.drop_vars(['__mask__'])
    else:
        max_number_of_observations = dataset.lat.size * dataset.lon.size

    must_load = len(agg_methods) > 1 or any(
        AGG_METHODS[agg_method] == MUST_LOAD for agg_method in agg_methods)
    if must_load:
        dataset.load()

    agg_datasets = []
    if use_groupby:
        time_group = dataset.groupby('time')
        for agg_method in agg_methods:
            method = getattr(time_group, agg_method)
            if agg_method == 'count':
                agg_dataset = method(dim=xr.ALL_DIMS)
            else:
                agg_dataset = method(dim=xr.ALL_DIMS, skipna=True)
            agg_datasets.append(agg_dataset)
    else:
        for agg_method in agg_methods:
            method = getattr(dataset, agg_method)
            if agg_method == 'count':
                agg_dataset = method(dim=('lat', 'lon'))
            else:
                agg_dataset = method(dim=('lat', 'lon'), skipna=True)
            agg_datasets.append(agg_dataset)

    agg_datasets = [
        agg_dataset.rename(name_dict=dict(
            {v: f"{v}_{agg_method}"
             for v in agg_dataset.data_vars}))
        for agg_method, agg_dataset in zip(agg_methods, agg_datasets)
    ]

    ts_dataset = xr.merge(agg_datasets)
    ts_dataset = ts_dataset.assign_attrs(
        max_number_of_observations=max_number_of_observations)

    return ts_dataset