def test_all(self): var = xdl.Variable(name="w", dtype=DataType.float, shape=[4, 2], initializer=xdl.Zeros()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_sparse_assign_op(var_name="w", var_type="index", ids=np.array([1, 2], dtype=np.int32), values=np.array([[1, 2], [3, 4]], dtype=np.float32)) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[0, 0], [1, 2], [3, 4], [0, 0]], dtype=np.float32)).all())
def test_all(self): var = xdl.Variable(name="w", dtype=DataType.float, shape=[4,1], initializer=xdl.Ones()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_sparse_apply_adagrad_op( learning_rate=np.array(0.5, dtype=np.float), initial_accumulator_value=np.array(0.0, dtype=np.float), grad=np.array([[1],[2]], dtype=np.float32), indices=np.array([1,2], dtype=np.int32), var_name="w", var_type="index") execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[1],[0.5],[0.5],[1]], dtype=np.float32)).all()) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[1],[0.14644662],[0.14644662],[1]], dtype=np.float32)).all())
def test_all(self): var = xdl.Variable(name="w", dtype=xdl.DT_FLOAT, shape=[4], initializer=xdl.Ones()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_dense_apply_adagrad_op( learning_rate=np.array(0.5, dtype=np.float), initial_accumulator_value=np.array(0.0, dtype=np.float), grad=np.array([1,2,3,4], dtype=np.float32), var_name="w", var_type="index") execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([0.5,0.5,0.5,0.5])).all()) execute(op) ret = execute(var.value) print(ret) self.assertTrue((ret == np.array([0.14644662,0.14644662,0.14644662,0.14644662], dtype=np.float32)).all())
def test_all(self): var = xdl.Variable(name="w", dtype=DataType.float, shape=[4,1], initializer=xdl.Ones()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_sparse_apply_momentum_op( learning_rate=np.array(0.5, dtype=np.float), momentum=np.array(0.9, dtype=np.float), grad=np.array([[1],[2]], dtype=np.float32), indices=np.array([1,2], dtype=np.int32), var_name="w", var_type="index", use_nesterov=False) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[1],[0.5],[0],[1]], dtype=np.float32)).all()) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[1],[-0.45],[-1.9],[1]], dtype=np.float32)).all())
def test_all(self): var = xdl.Variable(name="w", dtype=DataType.float, shape=[4], initializer=xdl.Ones()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_dense_apply_ftrl_op( learning_rate=np.array(0.1, dtype=np.float), learning_rate_power=np.array(-0.5, dtype=np.float), initial_accumulator_value=np.array(0.1, dtype=np.float), l1_reg=np.array(0, dtype=np.float), l2_reg=np.array(0, dtype=np.float), grad=np.array([1,2,3,4], dtype=np.float32), var_name="w", var_type="index") execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([0.6031424,0.7450533,0.7957225,0.8215], dtype=np.float32)).all()) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([0.5341358,0.6747804,0.7252074,0.75089955], dtype=np.float32)).all())
def test_all(self): var = xdl.Variable(name="w", dtype=DataType.float, shape=[4,1], initializer=xdl.Ones()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_sparse_apply_adam_op( beta1=np.array(0.9, dtype=np.float), beta2=np.array(0.999, dtype=np.float), epsilon=np.array(1e-08, dtype=np.float), learning_rate=np.array(0.1, dtype=np.float), grad=np.array([[1],[2]], dtype=np.float32), indices=np.array([1,2], dtype=np.int32), lr_decay=True, var_name="w", var_type="index") execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[1],[0.90000004],[0.90000004],[1]], dtype=np.float32)).all()) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[1],[0.8000001],[0.8000001],[1]], dtype=np.float32)).all())
def test_all(self): var = xdl.Variable(name="w", dtype=DataType.int32, shape=[4], initializer=xdl.Zeros()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) save_op = xdl.ps_save_op(ckpt_version=np.array(123, dtype=np.int8)) execute(save_op) add_op = xdl.ps_assign_add_op(var_name="w", var_type="index", delta=np.array([1, 2, 3, 4], dtype=np.int32)) execute(add_op) ret = execute(var.value) self.assertTrue((ret == np.array([1, 2, 3, 4])).all()) restore_op = xdl.ps_restore_op( ckpt_version=np.array(123, dtype=np.int8)) execute(restore_op) ret = execute(var.value) self.assertTrue((ret == np.array([0, 0, 0, 0])).all())
def test_all(self): var = xdl.Variable(name="w", dtype=DataType.float, shape=[4], initializer=xdl.Ones()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_dense_apply_momentum_op(learning_rate=np.array( 0.5, dtype=np.float), momentum=np.array(0.9, dtype=np.float), grad=np.array([1, 2, 3, 4], dtype=np.float32), var_name="w", var_type="index", use_nesterov=False) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([0.5, 0, -0.5, -1], dtype=np.float32)).all()) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([-0.45, -1.9, -3.35, -4.8], dtype=np.float32)).all())