# # mean_predict = SimplePredict(True) # mean_predict.run_all() # # linear_predict = LinearPredict() # linear_predict.run_all() # # filter_linear_predict = FilterLinearPredict(3) # filter_linear_predict.run_all() # # params = {'n_estimators': 250, 'max_depth': 3, 'min_samples_split': 1, # 'learning_rate': 0.001, 'loss': 'lad'} # gradient_boost = FilterGradientBoostPredict(params, 4) # gradient_boost.run_all() #param = {'max_depth':3, 'eta':1.0, 'objective':'reg:linear'} #xgboost_predict = XGBoostPredict(param) #xgboost_predict.run_all() # # param = {'max_depth':3, 'eta':1.0, 'objective':'reg:linear', 'range':4} # filter_xgboost_predict = FilterXGBoostPredict(param) # filter_xgboost_predict.run_all() if __name__ == '__main__': #RunAnalysis() #RunForcast() RunAnalysis() param = {'max_depth':3, 'eta':1.0, 'objective':'reg:linear'} xgboost_predict = XGBoostPredict(param) xgboost_predict.run_all()