def identity_test(n, shape, subd=I_curve):
    '''Averaging over indep coords of f'''
    true = df.Expression('x[2]*x[2]', degree=2)

    mesh = df.UnitCubeMesh(n, n, n)
    V = df.FunctionSpace(mesh, 'CG', 2)
    v = df.interpolate(true, V)

    f = df.MeshFunction('size_t', mesh, 1, 0)
    subd.mark(f, 1)

    line_mesh = EmbeddedMesh(f, 1)
    Q = average_space(V, line_mesh)
    q = df.Function(Q)

    Pi = avg_mat(V, Q, line_mesh, {'shape': shape})
    Pi.mult(v.vector(), q.vector())

    q0 = true
    # Error
    L = df.inner(q0 - q, q0 - q) * df.dx

    e = q.vector().copy()
    e.axpy(-1, df.interpolate(q0, Q).vector())

    return df.sqrt(abs(df.assemble(L)))
def square_test(n, subd=I_curve):
    '''Averaging over indep coords of f'''
    size = 0.1
    shape = Square(P=lambda x0: x0 - np.array(
        [size + size * x0[2], size + size * x0[2], 0]),
                   degree=10)
    foo = df.Expression('x[2]*((x[0]-0.5)*(x[0]-0.5) + (x[1]-0.5)*(x[1]-0.5))',
                        degree=3)

    mesh = df.UnitCubeMesh(n, n, n)
    V = df.FunctionSpace(mesh, 'CG', 3)
    v = df.interpolate(foo, V)

    f = df.MeshFunction('size_t', mesh, 1, 0)
    subd.mark(f, 1)

    true = df.Expression('x[2]*2./3*(size+size*x[2])*(size+size*x[2])',
                         degree=4,
                         size=size)

    line_mesh = EmbeddedMesh(f, 1)
    Q = average_space(V, line_mesh)
    q = df.Function(Q)

    Pi = avg_mat(V, Q, line_mesh, {'shape': shape})
    Pi.mult(v.vector(), q.vector())

    q0 = true
    # Error
    L = df.inner(q0 - q, q0 - q) * df.dx

    e = q.vector().copy()
    e.axpy(-1, df.interpolate(q0, Q).vector())

    return df.sqrt(abs(df.assemble(L)))
def disk_test(n, subd=I_curve):
    '''Averaging over indep coords of f'''
    shape = Disk(radius=lambda x0: 0.1 + 0.0 * x0[2] / 2, degree=10)
    foo = df.Expression('x[2]*((x[0]-0.5)*(x[0]-0.5) + (x[1]-0.5)*(x[1]-0.5))',
                        degree=3)

    mesh = df.UnitCubeMesh(n, n, n)
    V = df.FunctionSpace(mesh, 'CG', 3)
    v = df.interpolate(foo, V)

    f = df.MeshFunction('size_t', mesh, 1, 0)
    subd.mark(f, 1)

    true = df.Expression('x[2]*(0.1+0.0*x[2]/2)*(0.1+0.0*x[2]/2)/2', degree=4)

    line_mesh = EmbeddedMesh(f, 1)
    Q = average_space(V, line_mesh)
    q = df.Function(Q)

    Pi = avg_mat(V, Q, line_mesh, {'shape': shape})
    Pi.mult(v.vector(), q.vector())

    q0 = true
    # Error
    L = df.inner(q0 - q, q0 - q) * df.dx

    e = q.vector().copy()
    e.axpy(-1, df.interpolate(q0, Q).vector())

    return df.sqrt(abs(df.assemble(L)))
Esempio n. 4
0
def MeasureFunction(averaged):
    '''Get measure of the averaging shape as a function on the 1d surface'''
    # Get space on 1d mesh for the measure
    V = averaged.function_space()  # 3d one
    # Want the measure in scalar space
    if V.ufl_element().value_shape(): V = V.sub(0).collapse()

    mesh_1d = averaged.average_['mesh']
    # Finally
    TV = average_space(V, mesh_1d)

    TV_coordinates = TV.tabulate_dof_coordinates().reshape((TV.dim(), -1))
    TV_dm = TV.dofmap()

    visited = np.zeros(TV.dim(), dtype=bool)
    mesh_x = mesh_1d.coordinates()
    shape = averaged.average_['shape']

    values = np.empty(TV.dim(), dtype=float)
    for cell in cells(mesh_1d):
        # Get the tangent (normal of the plane which cuts the virtual
        # surface to yield the bdry curve
        v0, v1 = mesh_x[cell.entities(0)]
        n = v0 - v1

        # Where to
        dofs = TV_dm.cell_dofs(cell.index())
        for seen, dof in zip(visited[dofs], dofs):
            if not seen:
                x = TV_coordinates[dof]
                # Values sum up to the measure of the hypersurface
                values[dof] = sum(shape.quadrature(x, n).weights)
                visited[dof] = True

    assert np.all(visited)

    # Wrap as a function
    m = Function(TV)
    m.vector().set_local(values)

    return m
Esempio n. 5
0
def render_avg_surface(Pi):
    '''Plot the averaging surface via looking at the quadrature points used'''
    V = Pi.function_space()

    line_mesh = Pi.average_['mesh']
    shape = Pi.average_['shape']

    # Where the average will be represented
    Pi_V = average_space(V, line_mesh)

    # We produce a curve of quardrature points for each dof
    surface = []

    dm = Pi_V.dofmap()
    dofs_x = Pi_V.tabulate_dof_coordinates().reshape((Pi_V.dim(), -1))
    for cell in df.cells(line_mesh):
        v0, v1 = cell.get_vertex_coordinates().reshape((2, 3))
        n = v1 - v0

        for dof_x in dofs_x[dm.cell_dofs(cell.index())]:
            x = np.row_stack(shape.quadrature(dof_x, n).points)
            surface.append(x)

    return surface
def sanity_test(n, subd, shape):
    '''Constant is preserved'''
    mesh = df.UnitCubeMesh(n, n, n)
    V = df.FunctionSpace(mesh, 'CG', 2)
    v = df.interpolate(df.Constant(1), V)

    f = df.MeshFunction('size_t', mesh, 1, 0)
    subd.mark(f, 1)

    line_mesh = EmbeddedMesh(f, 1)
    Q = average_space(V, line_mesh)
    q = df.Function(Q)

    Pi = avg_mat(V, Q, line_mesh, {'shape': shape})
    Pi.mult(v.vector(), q.vector())

    q0 = df.Constant(1)
    # Error
    L = df.inner(q0 - q, q0 - q) * df.dx

    e = q.vector().copy()
    e.axpy(-1, df.interpolate(q0, Q).vector())

    return df.sqrt(abs(df.assemble(L)))