Esempio n. 1
0
 def on_calc_additional_loss(self, trg, generator, generator_loss):
     if self.policy_learning is None:
         return None
     reward = FactoredLossExpr()
     reward.add_loss("generator",
                     -dy.inputTensor(generator_loss.value(), batched=True))
     if self.length_prior is not None:
         reward.add_loss('length_prior',
                         self.length_prior.log_ll(self.seg_size_unpadded))
     reward_value = reward.value()
     if trg.batch_size() == 1:
         reward_value = [reward_value]
     reward_tensor = dy.inputTensor(reward_value, batched=True)
     ### Calculate losses
     try:
         return self.policy_learning.calc_loss(reward_tensor)
     finally:
         self.reward = reward
         if self.train and self.reporter is not None:
             self.reporter.report_process(self)
Esempio n. 2
0
 def on_calc_additional_loss(self, trg, generator, generator_loss):
     if self.policy_learning is None:
         return None
     trg_counts = dy.inputTensor([t.len_unpadded() for t in trg],
                                 batched=True)
     reward = FactoredLossExpr()
     # Adding all reward from the translator
     for loss_key, loss_value in generator_loss.get_nobackprop_loss().items(
     ):
         if loss_key == 'mle':
             reward.add_loss('mle', dy.cdiv(-loss_value, trg_counts))
         else:
             reward.add_loss(loss_key, -loss_value)
     if self.length_prior is not None:
         reward.add_loss('seg_lp',
                         self.length_prior.log_ll(self.seg_size_unpadded))
     reward = dy.inputTensor(reward.value(), batched=True)
     ### Calculate losses
     try:
         return self.policy_learning.calc_loss(reward)
     finally:
         self.reward = reward
         if self.reporter is not None:
             self.reporter.report_process(self)