Esempio n. 1
0
def read_descs(infiles, fmt):
  """ read and concatenate matrices from a list of files"""
  vl = []

  for fname in infiles:
    print "reading", fname, "\r",
    sys.stdout.flush()
    
    if fmt == 'fvecs':
      v = ynumpy.fvecs_read(fname)
    elif fmt == 'siftgeo':
      v, meta = ynumpy.siftgeo_read(fname)
      v = v.astype(numpy.float32)
    else: assert False, "unknown format %s" % informat

    if v.shape[1] != 0: vl.append(v.T)

  return numpy.vstack(vl).T
Esempio n. 2
0
def read_descs(infiles, fmt):
    """ read and concatenate matrices from a list of files"""
    vl = []

    for fname in infiles:
        print "reading", fname, "\r",
        sys.stdout.flush()

        if fmt == 'fvecs':
            v = ynumpy.fvecs_read(fname)
        elif fmt == 'siftgeo':
            v, meta = ynumpy.siftgeo_read(fname)
            v = v.astype(numpy.float32)
        else:
            assert False, "unknown format %s" % informat

        if v.shape[1] != 0: vl.append(v.T)

    return numpy.vstack(vl).T
Esempio n. 3
0
print "queries="
print queries

idx, dis = ynumpy.knn(base, queries, nnn, distance_type = 1)

print "indices="
print idx 

print "distances="
print dis


try: 
    # v, meta = ynumpy.siftgeo_read('/Users/matthijs//Desktop/papers/lhl/trunk/data/test_query_10k.siftgeo')
    v, meta = ynumpy.siftgeo_read('/scratch2/bigimbaz/dataset/holidays/siftgeo/hesaff_norm/128300.siftgeo')

    v = v.astype('float32')
    
except Exception, e: 
    print e
    print "generating random data"
    v = numpy.random.normal(0, 1, size = (20, 4)).astype(numpy.float32)
    
    v[10:,:] += numpy.tile(numpy.random.uniform(-10, 10, size = (1, 4)),
                           (10, 1))
    
else: 
    print "vectors = "
    print v
    print "meta info = "
Esempio n. 4
0
import os
import sys
import numpy as np
sys.path.append('/home/sibo/Documents/Projects/yael/yael_v438')
from yael import ynumpy

# list of available images
image_names = [filename.split('.')[0]
               for filename in os.listdir('holidays_100')
               if filename.endswith('.jpg')]

# load the SIFTs for these images
image_descs = []
for imname in image_names:
    desc, meta = ynumpy.siftgeo_read("holidays_100/%s.siftgeo" % imname)
    if desc.size == 0: desc = np.zeros((0, 128), dtype = 'uint8')
    # we drop the meta-information (point coordinates, orientation, etc.)
    image_descs.append(desc)

# make a big matrix with all image descriptors
all_desc = np.vstack(image_descs)

k = 64
n_sample = k * 1000

# choose n_sample descriptors at random
sample_indices = np.random.choice(all_desc.shape[0], n_sample)
sample = all_desc[sample_indices]

# until now sample was in uint8. Convert to float32
sample = sample.astype('float32')
Esempio n. 5
0
image_directory = "ukbench_jpg"
sift_directory = "ukbench_siftgeo"

# indices of the images we want to index
image_range = numpy.arange(3000, 3100)

print("Collecting a training set...")

train_set = []

# take descriptors from one image per group from the end of the set
for i in range(10000, 10200, 4):
    filename = "%s/ukbench%05d.siftgeo" % (sift_directory, i)
    print("  " + filename + "\r")
    sys.stdout.flush()
    sift_descriptors, geometric_info = ynumpy.siftgeo_read(filename)
    train_set.append(sift_descriptors)

train_set = numpy.vstack(train_set)

print("Training set of %d local descriptors in %d dimensions" %
      (train_set.shape[0], train_set.shape[1]))

trainset_size = num_gmm_components * 1000

if trainset_size < train_set.shape[0]:
    print("Subsampling to %d points" % trainset_size)
    subset = numpy.array(
        random.sample(range(train_set.shape[0]), trainset_size))
    train_set = train_set[subset]
Esempio n. 6
0
print "queries="
print queries

idx, dis = ynumpy.knn(base, queries, nnn, distance_type=1)

print "indices="
print idx

print "distances="
print dis

try:
    # v, meta = ynumpy.siftgeo_read('/Users/matthijs//Desktop/papers/lhl/trunk/data/test_query_10k.siftgeo')
    v, meta = ynumpy.siftgeo_read(
        '/scratch2/bigimbaz/dataset/holidays/siftgeo/hesaff_norm/128300.siftgeo'
    )

    v = v.astype('float32')

except Exception, e:
    print e
    print "generating random data"
    v = numpy.random.normal(0, 1, size=(20, 4)).astype(numpy.float32)

    v[10:, :] += numpy.tile(numpy.random.uniform(-10, 10, size=(1, 4)),
                            (10, 1))

else:
    print "vectors = "
    print v
Esempio n. 7
0
image_directory = "ukbench_jpg"
sift_directory = "ukbench_siftgeo"

# indices of the images we want to index
image_range = numpy.arange(3000, 3100)

print("Collecting a training set...")

train_set = []

# take descriptors from one image per group from the end of the set
for i in range(10000, 10200, 4):
    filename = "%s/ukbench%05d.siftgeo" % (sift_directory, i)
    print("  " + filename + "\r")
    sys.stdout.flush()
    sift_descriptors, geometric_info = ynumpy.siftgeo_read(filename)
    train_set.append(sift_descriptors)

train_set = numpy.vstack(train_set)

print("Training set of %d local descriptors in %d dimensions" % (train_set.shape[0], train_set.shape[1]))


trainset_size = num_gmm_components * 1000

if trainset_size < train_set.shape[0]:
    print("Subsampling to %d points" % trainset_size)
    subset = numpy.array(
        random.sample(range(train_set.shape[0]), trainset_size))
    train_set = train_set[subset]
Esempio n. 8
0
print queries

idx, dis = ynumpy.knn(base, queries, nnn, distance_type = 1)

print "indices="
print idx 

print "distances="
print dis


try: 
    # v, meta = ynumpy.siftgeo_read('/Users/matthijs//Desktop/papers/lhl/trunk/data/test_query_10k.siftgeo')

    # v, meta = ynumpy.siftgeo_read('/scratch2/bigimbaz/dataset/holidays/siftgeo/hesaff_norm/128300.siftgeo')
    v, meta = ynumpy.siftgeo_read('/tmp/128300.siftgeo')
    v = v.astype('float32')
    
except Exception, e: 
    print e
    print "generating random data"
    v = numpy.random.normal(0, 1, size = (20, 4)).astype(numpy.float32)
    
    v[10:,:] += numpy.tile(numpy.random.uniform(-10, 10, size = (1, 4)),
                           (10, 1))
    
else: 
    print "vectors = "
    print v
    print "meta info = "
    print meta