Esempio n. 1
0
    def __init__(self, system, parts, nlist=None):
        """
           **Arguments:**

           system
                An instance of the ``System`` class.

           parts
                A list of instances of sublcasses of ``ForcePart``. These are
                the different types of contributions to the force field, e.g.
                valence interactions, real-space electrostatics, and so on.

           **Optional arguments:**

           nlist
                A ``NeighborList`` instance. This is required if some items in the
                parts list use this nlist object.
        """
        ForcePart.__init__(self, 'all', system)
        self.system = system
        self.parts = []
        self.nlist = nlist
        self.needs_nlist_update = nlist is not None
        for part in parts:
            self.add_part(part)
        if log.do_medium:
            with log.section('FFINIT'):
                log('Force field with %i parts:&%s.' % (
                    len(self.parts), ', '.join(part.name for part in self.parts)
                ))
                log('Neighborlist present: %s' % (self.nlist is not None))
Esempio n. 2
0
    def __init__(self, system, grids):
        '''
           **Arguments:**

           system
                An instance of the ``System`` class.

           grids
                A dictionary with (ffatype, grid) items. Each grid must be a
                three-dimensional array with energies.

           This force part is only applicable to systems that are 3D periodic.
        '''
        if system.cell.nvec != 3:
            raise ValueError('The system must be 3d periodic for the grid term.')
        for grid in grids.itervalues():
            if grid.ndim != 3:
                raise ValueError('The energy grids must be 3D numpy arrays.')
        ForcePart.__init__(self, 'grid', system)
        self.system = system
        self.grids = grids
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 3
0
    def __init__(self, system, alpha, gcut=0.35):
        '''
           **Arguments:**

           system
                The system to which this interaction applies.

           alpha
                The alpha parameter in the Ewald summation method.

           gcut
                The cutoff in reciprocal space.
        '''
        ForcePart.__init__(self, 'ewald_reci', system)
        if not system.cell.nvec == 3:
            raise TypeError('The system must have a 3D periodic cell.')
        if system.charges is None:
            raise ValueError('The system does not have charges.')
        if system.dipoles is None:
            raise ValueError('The system does not have dipoles.')
        self.system = system
        self.alpha = alpha
        self.gcut = gcut
        self.update_gmax()
        self.work = np.empty(system.natom*2)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  alpha:             %s' % log.invlength(self.alpha))
                log('  gcut:              %s' % log.invlength(self.gcut))
                log.hline()
Esempio n. 4
0
    def __init__(self, system, alpha, scalings):
        '''
           **Arguments:**

           system
                The system to which this interaction applies.

           alpha
                The alpha parameter in the Ewald summation method.

           scalings
                A ``Scalings`` object. This object contains all the information
                about the energy scaling of pairwise contributions that are
                involved in covalent interactions. See
                :class:`yaff.pes.scalings.Scalings` for more details.
        '''
        ForcePart.__init__(self, 'ewald_cor', system)
        if not system.cell.nvec == 3:
            raise TypeError('The system must have a 3D periodic cell')
        if system.charges is None:
            raise ValueError('The system does not have charges.')
        self.system = system
        self.alpha = alpha
        self.scalings = scalings
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  alpha:             %s' % log.invlength(self.alpha))
                log('  scalings:          %5.3f %5.3f %5.3f' % (scalings.scale1, scalings.scale2, scalings.scale3))
                log.hline()
Esempio n. 5
0
    def generate(cls, system, parameters, **kwargs):
        """Create a force field for the given system with the given parameters.

           **Arguments:**

           system
                An instance of the System class

           parameters
                Three types are accepted: (i) the filename of the parameter
                file, which is a text file that adheres to YAFF parameter
                format, (ii) a list of such filenames, or (iii) an instance of
                the Parameters class.

           See the constructor of the :class:`yaff.pes.generator.FFArgs` class
           for the available optional arguments.

           This method takes care of setting up the FF object, and configuring
           all the necessary FF parts. This is a lot easier than creating an FF
           with the default constructor. Parameters for atom types that are not
           present in the system, are simply ignored.
        """
        if system.ffatype_ids is None:
            raise ValueError('The generators needs ffatype_ids in the system object.')
        with log.section('GEN'), timer.section('Generator'):
            from yaff.pes.generator import apply_generators, FFArgs
            from yaff.pes.parameters import Parameters
            if log.do_medium:
                log('Generating force field from %s' % str(parameters))
            if not isinstance(parameters, Parameters):
                parameters = Parameters.from_file(parameters)
            ff_args = FFArgs(**kwargs)
            apply_generators(system, parameters, ff_args)
            return ForceField(system, ff_args.parts, ff_args.nlist)
Esempio n. 6
0
    def __init__(self, system, alpha, dielectric=1.0):
        '''
           **Arguments:**

           system
                The system to which this interaction applies.

           alpha
                The alpha parameter in the Ewald summation method.

           **Optional arguments:**

           dielectric
                The scalar relative permittivity of the system.
        '''
        ForcePart.__init__(self, 'ewald_neut', system)
        if not system.cell.nvec == 3:
            raise TypeError('The system must have a 3D periodic cell')
        if system.charges is None:
            raise ValueError('The system does not have charges.')
        self.system = system
        self.alpha = alpha
        self.dielectric = dielectric
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  alpha:                   %s' % log.invlength(self.alpha))
                log('  relative permittivity:   %5.3f' % self.dielectric)
                log.hline()
Esempio n. 7
0
 def set_standard_masses(self):
     """Initialize the ``masses`` attribute based on the atomic numbers."""
     with log.section('SYS'):
         from molmod.periodic import periodic
         if self.masses is not None:
             if log.do_warning:
                 log.warn('Overwriting existing masses with default masses.')
         self.masses = np.array([periodic[n].mass for n in self.numbers])
Esempio n. 8
0
def g09log_to_hdf5(f, fn_log):
    """Convert Gaussian09 BOMD log file to Yaff HDF5 format.

       **Arguments:**

       f
            An open and writable HDF5 file.

       fn_log
            The name of the Gaussian log file.
    """
    with log.section('G09H5'):
        if log.do_medium:
            log('Loading Gaussian 09 file \'%s\' into \'trajectory\' of HDF5 file \'%s\'' % (
                fn_log, f.filename
            ))

        # First make sure the HDF5 file has a system description that is consistent
        # with the XYZ file.
        if 'system' not in f:
            raise ValueError('The HDF5 file must contain a system group.')
        if 'numbers' not in f['system']:
            raise ValueError('The HDF5 file must have a system group with atomic numbers.')
        natom = f['system/numbers'].shape[0]

        # Take care of the trajectory group
        tgrp = get_trajectory_group(f)

        # Take care of the pos and vel datasets
        dss = get_trajectory_datasets(tgrp,
            ('pos', (natom, 3)),
            ('vel', (natom, 3)),
            ('frc', (natom, 3)),
            ('time', (1,)),
            ('step', (1,)),
            ('epot', (1,)),
            ('ekin', (1,)),
            ('etot', (1,)),
        )
        ds_pos, ds_vel, ds_frc, ds_time, ds_step, ds_epot, ds_ekin, ds_etot = dss

        # Load frame by frame
        row = get_last_trajectory_row(dss)
        for numbers, pos, vel, frc, time, step, epot, ekin, etot in _iter_frames_g09(fn_log):
            if (numbers != f['system/numbers']).any():
                log.warn('The element numbers of the HDF5 and LOG file do not match.')
            write_to_dataset(ds_pos, pos, row)
            write_to_dataset(ds_vel, vel, row)
            write_to_dataset(ds_frc, frc, row)
            write_to_dataset(ds_time, time, row)
            write_to_dataset(ds_step, step, row)
            write_to_dataset(ds_epot, epot, row)
            write_to_dataset(ds_ekin, ekin, row)
            write_to_dataset(ds_etot, etot, row)
            row += 1

        # Check number of rows
        check_trajectory_rows(tgrp, dss, row)
Esempio n. 9
0
    def to_file(self, fn):
        """Write the system to a file

           **Arguments:**

           fn
                The file to write to.

           Supported formats are:

           chk
                Internal human-readable checkpoint format. This format includes
                all the information of a system object. All data are stored in
                atomic units.

           h5
                Internal binary checkpoint format. This format includes
                all the information of a system object. All data are stored in
                atomic units.

           xyz
                A simple file with atomic positions and elements. Coordinates
                are written in Angstroms.
        """
        if fn.endswith('.chk'):
            from molmod.io import dump_chk
            dump_chk(fn, {
                'numbers': self.numbers,
                'pos': self.pos,
                'ffatypes': self.ffatypes,
                'ffatype_ids': self.ffatype_ids,
                'scopes': self.scopes,
                'scope_ids': self.scope_ids,
                'bonds': self.bonds,
                'rvecs': self.cell.rvecs,
                'charges': self.charges,
                'radii': self.radii,
                'valence_charges': self.valence_charges,
                'dipoles': self.dipoles,
                'radii2': self.radii2,
                'masses': self.masses,
            })
        elif fn.endswith('.h5'):
            with h5.File(fn, 'w') as f:
                self.to_hdf5(f)
        elif fn.endswith('.xyz'):
            from molmod.io import XYZWriter
            from molmod.periodic import periodic
            xyz_writer = XYZWriter(fn, [periodic[n].symbol for n in self.numbers])
            xyz_writer.dump(str(self), self.pos)
        else:
            raise NotImplementedError('The extension of %s does not correspond to any known format.' % fn)
        if log.do_high:
            with log.section('SYS'):
                log('Wrote system to %s.' % fn)
Esempio n. 10
0
 def run(self, nstep=None):
     with log.section(self.log_name), timer.section(self.log_name):
         if nstep is None:
             while True:
                 if self.propagate():
                     break
         else:
             for i in xrange(nstep):
                 if self.propagate():
                     break
         self.finalize()
Esempio n. 11
0
 def __init__(self, comsystem, scaling=None):
     ForcePart.__init__(self, 'valence_com', comsystem)
     #ForcePartValence.__init__(self, system)
     self.comlist = comsystem.comlist
     self.gpos = np.zeros((comsystem.gpos_dim, 3), float)
     self.dlist = DeltaList(self.comlist)
     self.iclist = InternalCoordinateList(self.dlist)
     self.vlist = ValenceList(self.iclist)
     self.scaling = scaling
     if log.do_medium:
         with log.section('FPINIT'):
             log('Force part: %s' % self.name)
             log.hline()
     self.term = None  # volume term
Esempio n. 12
0
    def update(self):
        '''Rebuild or recompute the neighbor lists

           Based on the changes of the atomic positions or due to calls to
           ``update_rcut`` and ``update_rmax``, the neighbor lists will be
           rebuilt from scratch.

           The heavy computational work is done in low-level C routines. The
           neighbor lists array is reallocated if needed. The memory allocation
           is done in Python for convenience.
        '''
        with log.section('NLIST'), timer.section('Nlists'):
            assert self.rcut > 0

            if self._need_rebuild():
                # *rebuild* the entire neighborlist
                if self.system.cell.volume != 0:
                    if self.system.natom / self.system.cell.volume > 10:
                        raise ValueError('Atom density too high')
                # 1) make an initial status object for the neighbor list algorithm
                status = nlist_status_init(self.rmax)
                # 2) a loop of consecutive update/allocate calls
                last_start = 0
                while True:
                    done = nlist_build(self.system.pos, self.rcut + self.skin,
                                       self.rmax, self.system.cell, status,
                                       self.neighs[last_start:])
                    if done:
                        break
                    last_start = len(self.neighs)
                    new_neighs = np.empty((len(self.neighs) * 3) / 2,
                                          dtype=neigh_dtype)
                    new_neighs[:last_start] = self.neighs
                    self.neighs = new_neighs
                    del new_neighs
                # 3) get the number of neighbors in the list.
                self.nneigh = nlist_status_finish(status)
                if log.do_debug:
                    log('Rebuilt, size = %i' % self.nneigh)
                # 4) store the current state to check in future calls if we
                #    need to do a rebuild or a recompute.
                self._checkpoint()
                self.rebuild_next = False
            else:
                # just *recompute* the deltas and the distance in the
                # neighborlist
                nlist_recompute(self.system.pos, self._pos_old,
                                self.system.cell, self.neighs[:self.nneigh])
                if log.do_debug:
                    log('Recomputed')
Esempio n. 13
0
    def _verify_hooks(self):
        with log.section('ENSEM'):
            thermo = None
            index_thermo = 0
            baro = None
            index_baro = 0

            # Look for the presence of a thermostat and/or barostat
            if hasattr(self.hooks, '__len__'):
                for index, hook in enumerate(self.hooks):
                    if hook.method == 'thermostat':
                        thermo = hook
                        index_thermo = index
                    elif hook.method == 'barostat':
                        baro = hook
                        index_baro = index
            elif self.hooks is not None:
                if self.hooks.method == 'thermostat':
                    thermo = self.hooks
                elif self.hooks.method == 'barostat':
                    baro = self.hooks

            # If both are present, delete them and generate TBCombination element
            if thermo is not None and baro is not None:
                from yaff.sampling.npt import TBCombination
                if log.do_warning:
                    log.warn(
                        'Both thermostat and barostat are present separately and will be merged'
                    )
                del self.hooks[max(index_thermo, index_thermo)]
                del self.hooks[min(index_thermo, index_baro)]
                self.hooks.append(TBCombination(thermo, baro))

            if hasattr(self.hooks, '__len__'):
                for hook in self.hooks:
                    if hook.name == 'TBCombination':
                        thermo = hook.thermostat
                        baro = hook.barostat
            elif self.hooks is not None:
                if self.hooks.name == 'TBCombination':
                    thermo = self.hooks.thermostat
                    baro = self.hooks.barostat

            if log.do_warning:
                if thermo is not None:
                    log('Temperature coupling achieved through ' +
                        str(thermo.name) + ' thermostat')
                if baro is not None:
                    log('Pressure coupling achieved through ' +
                        str(baro.name) + ' barostat')
Esempio n. 14
0
File: ff.py Progetto: molmod/yaff
    def __init__(self, system, alpha, gcut=0.35, dielectric=1.0, exclude_frame=False, n_frame=0):
        '''
           **Arguments:**

           system
                The system to which this interaction applies.

           alpha
                The alpha parameter in the Ewald summation method.

           **Optional arguments:**

           gcut
                The cutoff in reciprocal space.

           dielectric
                The scalar relative permittivity of the system.

           exclude_frame
                A boolean to exclude framework-framework interactions
                (exclude_frame=True) for efficiency sake in MC simulations.

           n_frame
                Number of framework atoms. This parameter is used to exclude
                framework-framework neighbors when exclude_frame=True.
        '''
        ForcePart.__init__(self, 'ewald_reci', system)
        if not system.cell.nvec == 3:
            raise TypeError('The system must have a 3D periodic cell.')
        if system.charges is None:
            raise ValueError('The system does not have charges.')
        self.system = system
        self.alpha = alpha
        self.gcut = gcut
        self.dielectric = dielectric
        self.update_gmax()
        self.work = np.empty(system.natom*2)
        if exclude_frame == True and n_frame < 0:
            raise ValueError('The number of framework atoms to exclude must be positive.')
        elif exclude_frame == False:
            n_frame = 0
        self.n_frame = n_frame
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  alpha:                 %s' % log.invlength(self.alpha))
                log('  gcut:                  %s' % log.invlength(self.gcut))
                log('  relative permittivity: %5.3f' % self.dielectric)
                log.hline()
Esempio n. 15
0
    def __init__(self, ff, state=None, hooks=None, counter0=0):
        """
           **Arguments:**

           ff
                The ForceField instance used in the iterative algorithm

           **Optional arguments:**

           state
                A list with state items. State items are simple objects
                that take or derive a property from the current state of the
                iterative algorithm.

           hooks
                A function (or a list of functions) that is called after every
                iterative.

           counter0
                The counter value associated with the initial state.
        """
        self.ff = ff
        if state is None:
            self.state_list = [
                state_item.copy() for state_item in self.default_state
            ]
        else:
            #self.state_list = state
            self.state_list = [
                state_item.copy() for state_item in self.default_state
            ]
            self.state_list += state
        self.state = dict((item.key, item) for item in self.state_list)
        if hooks is None:
            self.hooks = []
        elif hasattr(hooks, '__len__'):
            self.hooks = hooks
        else:
            self.hooks = [hooks]
        self._add_default_hooks()
        self.counter0 = counter0
        self.counter = counter0
        with log.section(self.log_name), timer.section(self.log_name):
            self.initialize()

        # Initialize restart hook if present
        from yaff.sampling.io import RestartWriter
        for hook in self.hooks:
            if isinstance(hook, RestartWriter):
                hook.init_state(self)
Esempio n. 16
0
    def update(self):
        '''Rebuild or recompute the neighbor lists

           Based on the changes of the atomic positions or due to calls to
           ``update_rcut`` and ``update_rmax``, the neighbor lists will be
           rebuilt from scratch.

           The heavy computational work is done in low-level C routines. The
           neighbor lists array is reallocated if needed. The memory allocation
           is done in Python for convenience.
        '''
        with log.section('NLIST'), timer.section('Nlists'):
            assert self.rcut > 0

            if self._need_rebuild():
                # *rebuild* the entire neighborlist
                if self.system.cell.volume != 0:
                    if self.system.natom/self.system.cell.volume > 10:
                        raise ValueError('Atom density too high')
                # 1) make an initial status object for the neighbor list algorithm
                status = nlist_status_init(self.rmax)
                # 2) a loop of consecutive update/allocate calls
                last_start = 0
                while True:
                    done = nlist_build(
                        self.system.pos, self.rcut + self.skin, self.rmax,
                        self.system.cell, status, self.neighs[last_start:]
                    )
                    if done:
                        break
                    last_start = len(self.neighs)
                    new_neighs = np.empty((len(self.neighs)*3)/2, dtype=neigh_dtype)
                    new_neighs[:last_start] = self.neighs
                    self.neighs = new_neighs
                    del new_neighs
                # 3) get the number of neighbors in the list.
                self.nneigh = nlist_status_finish(status)
                if log.do_debug:
                    log('Rebuilt, size = %i' % self.nneigh)
                # 4) store the current state to check in future calls if we
                #    need to do a rebuild or a recompute.
                self._checkpoint()
                self.rebuild_next = False
            else:
                # just *recompute* the deltas and the distance in the
                # neighborlist
                nlist_recompute(self.system.pos, self._pos_old, self.system.cell, self.neighs[:self.nneigh])
                if log.do_debug:
                    log('Recomputed')
Esempio n. 17
0
    def __init__(self, system):
        '''
           **Arguments:**

           system
                An instance of the ``System`` class.
        '''
        ForcePart.__init__(self, 'valence', system)
        self.dlist = DeltaList(system)
        self.iclist = InternalCoordinateList(self.dlist)
        self.vlist = ValenceList(self.iclist)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 18
0
File: ff.py Progetto: boegel/yaff
    def __init__(self, system):
        '''
           **Arguments:**

           system
                An instance of the ``System`` class.
        '''
        ForcePart.__init__(self, 'valence', system)
        self.dlist = DeltaList(system)
        self.iclist = InternalCoordinateList(self.dlist)
        self.vlist = ValenceList(self.iclist)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 19
0
    def generate(cls, system, parameters, **kwargs):
        """Create a force field for the given system with the given parameters.

           **Arguments:**

           system
                An instance of the System class

           parameters
                Four types are accepted: (i) the filename of the parameter
                file, which is a text file that adheres to YAFF parameter
                format, (ii) a list of such filenames, (iii) an instance of
                the Parameters class, or (iv) the filename of the parameter file
                in the YAML format.

           See the constructor of the :class:`yaff.pes.generator.FFArgs` class
           for the available optional arguments.

           This method takes care of setting up the FF object, and configuring
           all the necessary FF parts. This is a lot easier than creating an FF
           with the default constructor. Parameters for atom types that are not
           present in the system, are simply ignored.
        """
        if system.ffatype_ids is None:
            raise ValueError(
                'The generators needs ffatype_ids in the system object.')
        with log.section('GEN'), timer.section('Generator'):
            from yaff.pes.generator import apply_generators, FFArgs
            from yaff.pes.parameters import Parameters
            if log.do_medium:
                log('Generating force field from %s' % str(parameters))
            if isinstance(parameters, str):
                if parameters[-3:] == 'txt':
                    parameters = Parameters.from_file(parameters)
                    ff_args = FFArgs(**kwargs)
                    apply_generators(system, parameters, ff_args)
                else:
                    yaml_dict = yaml.safe_load(open(parameters))
                    ff_args = FFArgs(**kwargs)
                    apply_generators(system, yaml_dict, ff_args)
            else:
                if isinstance(parameters, Parameters):
                    raise NotImplementedError
                else:
                    yaml_dict = parameters
                    ff_args = FFArgs(**kwargs)
                    apply_generators(system, yaml_dict, ff_args)
            return ForceField(system, ff_args.parts, ff_args.nlist)
Esempio n. 20
0
    def add_term(self, term):
        '''Add a new term to the covalent force field.

           **Arguments:**

           term
                An instance of the class :class:`yaff.pes.ff.vlist.ValenceTerm`.

           In principle, one should add all energy terms before calling the
           ``compute`` method, but with the current implementation of Yaff,
           energy terms can be added at any time. (This may change in future.)
        '''
        if log.do_high:
            with log.section('VTERM'):
                log('%7i&%s %s' % (self.vlist.nv, term.get_log(), ' '.join(ic.get_log() for ic in term.ics)))
        self.vlist.add_term(term)
Esempio n. 21
0
 def set_hills(self, q0s, Ks, sigmas, tempering=0.0, T=None, periodicities=None):
     # Safety checks
     assert q0s.shape[1]==self.ncv
     assert sigmas.shape[0]==self.ncv
     assert q0s.shape[0]==Ks.shape[0]
     if tempering != 0.0 and T is None:
         raise ValueError("For a well-tempered MTD run, the temperature "
             "has to be specified")
     self.q0s = q0s
     self.sigmas = sigmas
     self.Ks = Ks
     self.tempering = tempering
     self.T = T
     self.periodicities = periodicities
     if log.do_medium:
         with log.section("SUMHILL"):
             log("Found %d collective variables and %d Gaussian hills"%(self.ncv,self.q0s.shape[0]))
Esempio n. 22
0
    def __init__(self, ff, state=None, hooks=None, counter0=0):
        """
           **Arguments:**

           ff
                The ForceField instance used in the iterative algorithm

           **Optional arguments:**

           state
                A list with state items. State items are simple objects
                that take or derive a property from the current state of the
                iterative algorithm.

           hooks
                A function (or a list of functions) that is called after every
                iterative.

           counter0
                The counter value associated with the initial state.
        """
        self.ff = ff
        if state is None:
            self.state_list = [state_item.copy() for state_item in self.default_state]
        else:
            #self.state_list = state
            self.state_list = [state_item.copy() for state_item in self.default_state]
            self.state_list += state
        self.state = dict((item.key, item) for item in self.state_list)
        if hooks is None:
            self.hooks = []
        elif hasattr(hooks, '__len__'):
            self.hooks = hooks
        else:
            self.hooks = [hooks]
        self._add_default_hooks()
        self.counter0 = counter0
        self.counter = counter0
        with log.section(self.log_name), timer.section(self.log_name):
            self.initialize()

        # Initialize restart hook if present
        from yaff.sampling.io import RestartWriter
        for hook in self.hooks:
            if isinstance(hook, RestartWriter):
                hook.init_state(self)
Esempio n. 23
0
    def _verify_hooks(self):
        with log.section('ENSEM'):
            thermo = None
            index_thermo = 0
            baro = None
            index_baro = 0

            # Look for the presence of a thermostat and/or barostat
            if hasattr(self.hooks, '__len__'):
                for index, hook in enumerate(self.hooks):
                    if hook.method == 'thermostat':
                        thermo = hook
                        index_thermo = index
                    elif hook.method == 'barostat':
                        baro = hook
                        index_baro = index
            elif self.hooks is not None:
                if self.hooks.method == 'thermostat':
                    thermo = self.hooks
                elif self.hooks.method == 'barostat':
                    baro = self.hooks

            # If both are present, delete them and generate TBCombination element
            if thermo is not None and baro is not None:
                from yaff.sampling.npt import TBCombination
                if log.do_warning:
                    log.warn('Both thermostat and barostat are present separately and will be merged')
                del self.hooks[max(index_thermo, index_thermo)]
                del self.hooks[min(index_thermo, index_baro)]
                self.hooks.append(TBCombination(thermo, baro))

            if hasattr(self.hooks, '__len__'):
                for hook in self.hooks:
                    if hook.name == 'TBCombination':
                        thermo = hook.thermostat
                        baro = hook.barostat
            elif self.hooks is not None:
                if self.hooks.name == 'TBCombination':
                    thermo = self.hooks.thermostat
                    baro = self.hooks.barostat

            if log.do_warning:
                if thermo is not None:
                    log('Temperature coupling achieved through ' + str(thermo.name) + ' thermostat')
                if baro is not None:
                    log('Pressure coupling achieved through ' + str(baro.name) + ' barostat')
Esempio n. 24
0
    def add_term(self, term):
        '''Add a new term to the covalent force field.

           **Arguments:**

           term
                An instance of the class :class:`yaff.pes.ff.vlist.ValenceTerm`.

           In principle, one should add all energy terms before calling the
           ``compute`` method, but with the current implementation of Yaff,
           energy terms can be added at any time. (This may change in future.)
        '''
        if log.do_high:
            with log.section('VTERM'):
                log('%7i&%s %s' % (self.vlist.nv, term.get_log(), ' '.join(
                    ic.get_log() for ic in term.ics)))
        self.vlist.add_term(term)
Esempio n. 25
0
    def detect_ffatypes(self, rules):
        """Initialize the ``ffatypes`` attribute based on ATSELECT rules.

           **Argument:**

           rules
                A list of (ffatype, rule) pairs that will be used to initialize
                the attributes ``self.ffatypes`` and ``self.ffatype_ids``.

           If the system already has FF atom types, they will be overwritten.
        """
        with log.section('SYS'):
            # Give warning if needed
            if self.ffatypes is not None:
                if log.do_warning:
                    log.warn('Overwriting existing FF atom types.')
            # Compile all the rules
            my_rules = []
            for ffatype, rule in rules:
                check_name(ffatype)
                if isinstance(rule, str):
                    rule = atsel_compile(rule)
                my_rules.append((ffatype, rule))
            # Use the rules to detect the atom types
            lookup = {}
            self.ffatypes = []
            self.ffatype_ids = np.zeros(self.natom, int)
            for i in range(self.natom):
                my_ffatype = None
                for ffatype, rule in my_rules:
                    if rule(self, i):
                        my_ffatype = ffatype
                        break
                if my_ffatype is None:
                    raise ValueError(
                        'Could not detect FF atom type of atom %i.' % i)
                ffatype_id = lookup.get(my_ffatype)
                if ffatype_id is None:
                    ffatype_id = len(lookup)
                    self.ffatypes.append(my_ffatype)
                    lookup[my_ffatype] = ffatype_id
                self.ffatype_ids[i] = ffatype_id
            # Make sure all is done well ...
            self._init_derived_ffatypes()
Esempio n. 26
0
    def detect_ffatypes(self, rules):
        """Initialize the ``ffatypes`` attribute based on ATSELECT rules.

           **Argument:**

           rules
                A list of (ffatype, rule) pairs that will be used to initialize
                the attributes ``self.ffatypes`` and ``self.ffatype_ids``.

           If the system already has FF atom types, they will be overwritten.
        """
        with log.section('SYS'):
            # Give warning if needed
            if self.ffatypes is not None:
                if log.do_warning:
                    log.warn('Overwriting existing FF atom types.')
            # Compile all the rules
            my_rules = []
            for ffatype, rule in rules:
                check_name(ffatype)
                if isinstance(rule, basestring):
                    rule = atsel_compile(rule)
                my_rules.append((ffatype, rule))
            # Use the rules to detect the atom types
            lookup = {}
            self.ffatypes = []
            self.ffatype_ids = np.zeros(self.natom, int)
            for i in xrange(self.natom):
                my_ffatype = None
                for ffatype, rule in my_rules:
                    if rule(self, i):
                        my_ffatype = ffatype
                        break
                if my_ffatype is None:
                    raise ValueError('Could not detect FF atom type of atom %i.' % i)
                ffatype_id = lookup.get(my_ffatype)
                if ffatype_id is None:
                    ffatype_id = len(lookup)
                    self.ffatypes.append(my_ffatype)
                    lookup[my_ffatype] = ffatype_id
                self.ffatype_ids[i] = ffatype_id
            # Make sure all is done well ...
            self._init_derived_ffatypes()
Esempio n. 27
0
File: ff.py Progetto: molmod/yaff
    def __init__(self, system, comlist=None):
        '''
           Parameters
           ----------

           system
                An instance of the ``System`` class.
           comlist
                An optional layer to derive centers of mass from the atomic positions.
                These centers of mass are used as input for the first layer, the relative
                vectors.
        '''
        ForcePart.__init__(self, 'valence', system)
        self.comlist = comlist
        self.dlist = DeltaList(system if comlist is None else comlist)
        self.iclist = InternalCoordinateList(self.dlist)
        self.vlist = ValenceList(self.iclist)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 28
0
    def __init__(self, system, comlist=None):
        '''
           Parameters
           ----------

           system
                An instance of the ``System`` class.
           comlist
                An optional layer to derive centers of mass from the atomic positions.
                These centers of mass are used as input for the first layer, the relative
                vectors.
        '''
        ForcePart.__init__(self, 'valence', system)
        self.comlist = comlist
        self.dlist = DeltaList(system if comlist is None else comlist)
        self.iclist = InternalCoordinateList(self.dlist)
        self.vlist = ValenceList(self.iclist)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 29
0
    def __init__(self, system):
        '''
           Parameters
           ----------

           system
                An instance of the ``System`` class.
        '''
        ForcePart.__init__(self, 'valence', system)

        # override self.gpos to the correct size!
        # natom of COMSystem object will return number of beads
        # but gpos has to have the size (n_atoms, 3), to be consisten
        # with the other parts of the force field
        self.dlist = DeltaList(system)
        self.iclist = InternalCoordinateList(self.dlist)
        self.vlist = ValenceList(self.iclist)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 30
0
    def __init__(self, system, nlist, scalings, pair_pot):
        '''
           **Arguments:**

           system
                The system to which this pairwise interaction applies.

           nlist
                A ``NeighborList`` object. This has to be the same as the one
                passed to the ForceField object that contains this part.

           scalings
                A ``Scalings`` object. This object contains all the information
                about the energy scaling of pairwise contributions that are
                involved in covalent interactions. See
                :class:`yaff.pes.scalings.Scalings` for more details.

           pair_pot
                An instance of the ``PairPot`` built-in class from
                :mod:`yaff.pes.ext`.
        '''
        ForcePart.__init__(self, 'pair_%s' % pair_pot.name, system)
        self.nlist = nlist
        self.scalings = scalings
        self.pair_pot = pair_pot
        self.nlist.request_rcut(pair_pot.rcut)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  scalings:          %5.3f %5.3f %5.3f' %
                    (scalings.scale1, scalings.scale2, scalings.scale3))
                log('  real space cutoff: %s' % log.length(pair_pot.rcut))
                tr = pair_pot.get_truncation()
                if tr is None:
                    log('  truncation:     none')
                else:
                    log('  truncation:     %s' % tr.get_log())
                self.pair_pot.log()
                log.hline()
Esempio n. 31
0
    def iter_matches(self, other):
        """Yield all renumberings of atoms that map the given system on the current.

        Parameters
        ----------
        other : yaff.System
            Another system with the same number of atoms (and chemical formula), or less
            atoms.

        The graph distance is used to perform the mapping, so bonds must be defined in
        the current and the given system.
        """
        from molmod.graphs import Graph
        with log.section('SYS'):
            log('Generating allowed indexes for renumbering.')
            # The allowed permutations is just based on the chemical elements, not the atom
            # types, which could also be useful.
            allowed = []
            if self.ffatypes is None or other.ffatypes is None:
                for number1 in other.numbers:
                    allowed.append((self.numbers == number1).nonzero()[0])
            else:
                # Only continue if other.ffatypes is a subset of self.ffatypes
                if not (set(self.ffatypes) >= set(other.ffatypes)):
                    return
                ffatype_ids0 = self.ffatype_ids
                ffatypes0 = list(self.ffatypes)
                order = np.array([ffatypes0.index(ffatype) for ffatype in other.ffatypes])
                ffatype_ids1 = order[other.ffatype_ids]
                for ffatype_id1 in ffatype_ids1:
                    allowed.append((ffatype_ids0 == ffatype_id1).nonzero()[0])
            # Use Molmod to construct graph distance matrices.
            log('Building graph distance matrix for self.')
            dm0 = Graph(self.bonds).distances
            log('Building graph distance matrix for other.')
            dm1 = Graph(other.bonds).distances
            # Yield the solutions
            log('Generating renumberings.')
            for match in iter_matches(dm0, dm1, allowed):
                yield match
Esempio n. 32
0
    def __init__(self, system, alpha, scalings, dielectric=1.0):
        '''
           **Arguments:**

           system
                The system to which this interaction applies.

           alpha
                The alpha parameter in the Ewald summation method.

           scalings
                A ``Scalings`` object. This object contains all the information
                about the energy scaling of pairwise contributions that are
                involved in covalent interactions. See
                :class:`yaff.pes.scalings.Scalings` for more details.

           **Optional arguments:**

           dielectric
                The scalar relative permittivity of the system.
        '''
        ForcePart.__init__(self, 'ewald_cor', system)
        if not system.cell.nvec == 3:
            raise TypeError('The system must have a 3D periodic cell')
        if system.charges is None:
            raise ValueError('The system does not have charges.')
        self.system = system
        self.alpha = alpha
        self.dielectric = dielectric
        self.scalings = scalings
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  alpha:             %s' % log.invlength(self.alpha))
                log('  relative permittivity   %5.3f' % self.dielectric)
                log('  scalings:          %5.3f %5.3f %5.3f' %
                    (scalings.scale1, scalings.scale2, scalings.scale3))
                log.hline()
Esempio n. 33
0
    def detect_bonds(self, exceptions=None):
        """Initialize the ``bonds`` attribute based on inter-atomic distances

           **Optional argument:**

           exceptions:
                Specify custom threshold for certain pairs of elements. This
                must be a dictionary with ((num0, num1), threshold) as items.

           For each pair of elements, a distance threshold is used to detect
           bonded atoms. The distance threshold is based on a database of known
           bond lengths. If the database does not contain a record for the given
           element pair, the threshold is based on the sum of covalent radii.
        """
        with log.section('SYS'):
            from molmod.bonds import bonds
            if self.bonds is not None:
                if log.do_warning:
                    log.warn('Overwriting existing bonds.')
            work = np.zeros((self.natom*(self.natom-1))/2, float)
            self.cell.compute_distances(work, self.pos)
            ishort = (work < bonds.max_length*1.01).nonzero()[0]
            new_bonds = []
            for i in ishort:
                i0, i1 = _unravel_triangular(i)
                n0 = self.numbers[i0]
                n1 = self.numbers[i1]
                if exceptions is not None:
                    threshold = exceptions.get((n0, n1))
                    if threshold is None and n0!=n1:
                        threshold = exceptions.get((n1, n0))
                    if threshold is not None:
                        if work[i] < threshold:
                            new_bonds.append([i0, i1])
                        continue
                if bonds.bonded(n0, n1, work[i]):
                    new_bonds.append([i0, i1])
            self.bonds = np.array(new_bonds)
            self._init_derived_bonds()
Esempio n. 34
0
    def __init__(self, system, nlist, scalings, pair_pot):
        '''
           **Arguments:**

           system
                The system to which this pairwise interaction applies.

           nlist
                A ``NeighborList`` object. This has to be the same as the one
                passed to the ForceField object that contains this part.

           scalings
                A ``Scalings`` object. This object contains all the information
                about the energy scaling of pairwise contributions that are
                involved in covalent interactions. See
                :class:`yaff.pes.scalings.Scalings` for more details.

           pair_pot
                An instance of the ``PairPot`` built-in class from
                :mod:`yaff.pes.ext`.
        '''
        ForcePart.__init__(self, 'pair_%s' % pair_pot.name, system)
        self.nlist = nlist
        self.scalings = scalings
        self.pair_pot = pair_pot
        self.nlist.request_rcut(pair_pot.rcut)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  scalings:          %5.3f %5.3f %5.3f' % (scalings.scale1, scalings.scale2, scalings.scale3))
                log('  real space cutoff: %s' % log.length(pair_pot.rcut))
                tr = pair_pot.get_truncation()
                if tr is None:
                    log('  truncation:     none')
                else:
                    log('  truncation:     %s' % tr.get_log())
                self.pair_pot.log()
                log.hline()
Esempio n. 35
0
    def detect_bonds(self, exceptions=None):
        """Initialize the ``bonds`` attribute based on inter-atomic distances

           **Optional argument:**

           exceptions:
                Specify custom threshold for certain pairs of elements. This
                must be a dictionary with ((num0, num1), threshold) as items.

           For each pair of elements, a distance threshold is used to detect
           bonded atoms. The distance threshold is based on a database of known
           bond lengths. If the database does not contain a record for the given
           element pair, the threshold is based on the sum of covalent radii.
        """
        with log.section('SYS'):
            from molmod.bonds import bonds
            if self.bonds is not None:
                if log.do_warning:
                    log.warn('Overwriting existing bonds.')
            work = np.zeros((self.natom * (self.natom - 1)) // 2, float)
            self.cell.compute_distances(work, self.pos)
            ishort = (work < bonds.max_length * 1.01).nonzero()[0]
            new_bonds = []
            for i in ishort:
                i0, i1 = _unravel_triangular(i)
                n0 = self.numbers[i0]
                n1 = self.numbers[i1]
                if exceptions is not None:
                    threshold = exceptions.get((n0, n1))
                    if threshold is None and n0 != n1:
                        threshold = exceptions.get((n1, n0))
                    if threshold is not None:
                        if work[i] < threshold:
                            new_bonds.append([i0, i1])
                        continue
                if bonds.bonded(n0, n1, work[i]):
                    new_bonds.append([i0, i1])
            self.bonds = np.array(new_bonds)
            self._init_derived_bonds()
Esempio n. 36
0
def estimate_hessian(dof, eps=1e-4):
    """Estimate the Hessian using the symmetric finite difference approximation.

       **Arguments:**

       dof
            A DOF object

       **Optional arguments:**

       eps
            The magnitude of the displacements
    """
    with log.section('HESS'), timer.section('Hessian'):
        # Loop over all displacements
        if log.do_medium:
            log('The following displacements are computed:')
            log('DOF     Dir Energy')
            log.hline()
        x1 = dof.x0.copy()
        rows = np.zeros((len(x1), len(x1)), float)
        for i in xrange(len(x1)):
            x1[i] = dof.x0[i] + eps
            epot, gradient_p = dof.fun(x1, do_gradient=True)
            if log.do_medium:
                log('% 7i pos %s' % (i, log.energy(epot)))
            x1[i] = dof.x0[i] - eps
            epot, gradient_m = dof.fun(x1, do_gradient=True)
            if log.do_medium:
                log('% 7i neg %s' % (i, log.energy(epot)))
            rows[i] = (gradient_p - gradient_m) / (2 * eps)
            x1[i] = dof.x0[i]
        dof.reset()
        if log.do_medium:
            log.hline()

        # Enforce symmetry and return
        return 0.5 * (rows + rows.T)
Esempio n. 37
0
def estimate_hessian(dof, eps=1e-4):
    """Estimate the Hessian using the symmetric finite difference approximation.

       **Arguments:**

       dof
            A DOF object

       **Optional arguments:**

       eps
            The magnitude of the displacements
    """
    with log.section('HESS'), timer.section('Hessian'):
        # Loop over all displacements
        if log.do_medium:
            log('The following displacements are computed:')
            log('DOF     Dir Energy')
            log.hline()
        x1 = dof.x0.copy()
        rows = np.zeros((len(x1), len(x1)), float)
        for i in xrange(len(x1)):
            x1[i] = dof.x0[i] + eps
            epot, gradient_p = dof.fun(x1, do_gradient=True)
            if log.do_medium:
                log('% 7i pos %s' % (i, log.energy(epot)))
            x1[i] = dof.x0[i] - eps
            epot, gradient_m = dof.fun(x1, do_gradient=True)
            if log.do_medium:
                log('% 7i neg %s' % (i, log.energy(epot)))
            rows[i] = (gradient_p-gradient_m)/(2*eps)
            x1[i] = dof.x0[i]
        dof.reset()
        if log.do_medium:
            log.hline()

        # Enforce symmetry and return
        return 0.5*(rows + rows.T)
Esempio n. 38
0
    def __init__(self, system, pext):
        '''
           **Arguments:**

           system
                An instance of the ``System`` class.

           pext
                The external pressure. (Positive will shrink the system.) In
                case of 2D-PBC, this is the surface tension. In case of 1D, this
                is the linear strain.

           This force part is only applicable to systems that are periodic.
        '''
        if system.cell.nvec == 0:
            raise ValueError('The system must be periodic in order to apply a pressure')
        ForcePart.__init__(self, 'press', system)
        self.system = system
        self.pext = pext
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 39
0
File: ff.py Progetto: molmod/yaff
    def __init__(self, system, part_pair):
        '''
           **Arguments:**

           system
                An instance of the ``System`` class.

           part_pair
                An instance of the ``PairPot`` class.

           This force part is only applicable to systems that are 3D periodic.
        '''
        if system.cell.nvec != 3:
            raise ValueError('Tail corrections can only be applied to 3D periodic systems')
        if part_pair.name in ['pair_ei','pair_eidip']:
            raise ValueError('Tail corrections are divergent for %s'%part_pair.name)
        super(ForcePartTailCorrection, self).__init__('tailcorr_%s'%(part_pair.name), system)
        self.ecorr, self.wcorr = part_pair.pair_pot.prepare_tailcorrections(system.natom)
        self.system = system
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 40
0
File: ff.py Progetto: boegel/yaff
    def __init__(self, system, alpha, gcut=0.35, dielectric=1.0):
        '''
           **Arguments:**

           system
                The system to which this interaction applies.

           alpha
                The alpha parameter in the Ewald summation method.

           **Optional arguments:**

           gcut
                The cutoff in reciprocal space.

           dielectric
                The scalar relative permittivity of the system.
        '''
        ForcePart.__init__(self, 'ewald_reci', system)
        if not system.cell.nvec == 3:
            raise TypeError('The system must have a 3D periodic cell.')
        if system.charges is None:
            raise ValueError('The system does not have charges.')
        self.system = system
        self.alpha = alpha
        self.gcut = gcut
        self.dielectric = dielectric
        self.update_gmax()
        self.work = np.empty(system.natom * 2)
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
                log('  alpha:                 %s' % log.invlength(self.alpha))
                log('  gcut:                  %s' % log.invlength(self.gcut))
                log('  relative permittivity: %5.3f' % self.dielectric)
                log.hline()
Esempio n. 41
0
    def __init__(self, system, pext):
        '''
           **Arguments:**

           system
                An instance of the ``System`` class.

           pext
                The external pressure. (Positive will shrink the system.) In
                case of 2D-PBC, this is the surface tension. In case of 1D, this
                is the linear strain.

           This force part is only applicable to systems that are periodic.
        '''
        if system.cell.nvec == 0:
            raise ValueError(
                'The system must be periodic in order to apply a pressure')
        ForcePart.__init__(self, 'press', system)
        self.system = system
        self.pext = pext
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 42
0
    def __init__(self, system, comlist=None):
        '''
           **Arguments:**

           system
                An instance of the ``System`` class.

           **Optional arguments:**

           comlist
                An optional layer to derive centers of mass from the atomic positions.
                These centers of mass are used as input for the first layer, the relative
                vectors.
        '''
        ForcePart.__init__(self, 'bias', system)
        self.system = system
        self.valence = ForcePartValence(system)
        if comlist is not None:
            raise NotImplementedError
        if comlist is not None:
            self.valence_com = ForcePartValence(system, comlist=comlist)
        else:
            self.valence_com = None
        self.terms = []
        # The terms contributing to the bias potential are divided into three
        # categories:
        #   0) instances of BiasPotential
        #   1) instances of ValenceTerm with a regular DeltaList
        #   2) instances of ValenceTerm with a COMList
        # The following list facilitates looking up the terms after they have
        # been added
        self.term_lookup = []
        if log.do_medium:
            with log.section('FPINIT'):
                log('Force part: %s' % self.name)
                log.hline()
Esempio n. 43
0
File: pca.py Progetto: molmod/yaff
def pca_projection(f_target, f, pm, start=0, end=None, step=1, select=None, path='trajectory/pos', mw=True):
    """
        Determines the principal components of an MD simulation

        **Arguments:**

        f_target
            Path to an h5.File instance to which the results are written.

        f
            An h5.File instance containing the trajectory data.

        pm
            An array containing the principal modes in its columns

        **Optional arguments:**

        start
            The first sample to be considered for analysis. This may be
            negative to indicate that the analysis should start from the
            -start last samples.

        end
            The last sample to be considered for analysis. This may be
            negative to indicate that the last -end sample should not be
            considered.

        step
            The spacing between the samples used for the analysis

        select
            A list of atom indexes that are considered for the computation
            of the spectrum. If not given, all atoms are used.

        path
            The path of the dataset that contains the time dependent data in
            the HDF5 file. The first axis of the array must be the time
            axis.

        mw
            If mass_weighted is True, the covariance matrix is mass-weighted.
    """
    # Load in the relevant data
    q = f[path][start:end:step,:,:]
    # Select the given atoms
    if select is not None:
        q = q[:,select,:]
    # Reshape such that all Cartesian coordinates are treated equally
    q = q.reshape(q.shape[0],-1)

    # If necessary, weight with the mass
    if mw:
        # Select the necessary masses
        masses = f['system/masses']
        if select is not None:
            masses = masses[select]
        # Repeat d times, with d the dimension
        masses = np.repeat(masses,3)
        # Reweight with the masses
        q *= np.sqrt(masses)

    # Calculation of the principal components: projection of each q_j on the principal modes
    with log.section('PCA'):
        log('Determining principal components')
        prin_comp = np.dot(q, pm)

    # Create output HDF5 file
    with h5.File(f_target, 'a') as g:
        if not 'pca' in g:
            pca = g.create_group('pca')
        else:
            pca = g['pca']
        pca.create_dataset('pc', data=prin_comp)
Esempio n. 44
0
def g09log_to_hdf5(f, fn_log):
    """Convert Gaussian09 BOMD log file to Yaff HDF5 format.

       **Arguments:**

       f
            An open and writable HDF5 file.

       fn_log
            The name of the Gaussian log file.
    """
    with log.section('G09H5'):
        if log.do_medium:
            log('Loading Gaussian 09 file \'%s\' into \'trajectory\' of HDF5 file \'%s\''
                % (fn_log, f.filename))

        # First make sure the HDF5 file has a system description that is consistent
        # with the XYZ file.
        if 'system' not in f:
            raise ValueError('The HDF5 file must contain a system group.')
        if 'numbers' not in f['system']:
            raise ValueError(
                'The HDF5 file must have a system group with atomic numbers.')
        natom = f['system/numbers'].shape[0]

        # Take care of the trajectory group
        tgrp = get_trajectory_group(f)

        # Take care of the pos and vel datasets
        dss = get_trajectory_datasets(
            tgrp,
            ('pos', (natom, 3)),
            ('vel', (natom, 3)),
            ('frc', (natom, 3)),
            ('time', (1, )),
            ('step', (1, )),
            ('epot', (1, )),
            ('ekin', (1, )),
            ('etot', (1, )),
        )
        ds_pos, ds_vel, ds_frc, ds_time, ds_step, ds_epot, ds_ekin, ds_etot = dss

        # Load frame by frame
        row = get_last_trajectory_row(dss)
        for numbers, pos, vel, frc, time, step, epot, ekin, etot in _iter_frames_g09(
                fn_log):
            if (numbers != f['system/numbers']).any():
                log.warn(
                    'The element numbers of the HDF5 and LOG file do not match.'
                )
            write_to_dataset(ds_pos, pos, row)
            write_to_dataset(ds_vel, vel, row)
            write_to_dataset(ds_frc, frc, row)
            write_to_dataset(ds_time, time, row)
            write_to_dataset(ds_step, step, row)
            write_to_dataset(ds_epot, epot, row)
            write_to_dataset(ds_ekin, ekin, row)
            write_to_dataset(ds_etot, etot, row)
            row += 1

        # Check number of rows
        check_trajectory_rows(tgrp, dss, row)
Esempio n. 45
0
File: pca.py Progetto: molmod/yaff
def calc_pca(f_target, cov_mat=None, f=None, q_ref=None, start=0, end=None, step=1, select=None, path='trajectory/pos', mw=True, temp=None):
    """
        Performs a principle component analysis of the given trajectory.

        **Arguments:**

        f_target
            Path to an h5.File instance to which the results are written.

        **Optional arguments:**

        cov_mat
            The covariance matrix, if already calculated. If not provided,
            the covariance matrix will be calculatd based on the file f.

        f
            An h5.File instance containing the trajectory data.

        q_ref
            Reference vector of the positions. If not provided, the ensemble
            average is taken.

        start
            The first sample to be considered for analysis. This may be
            negative to indicate that the analysis should start from the
            -start last samples.

        end
            The last sample to be considered for analysis. This may be
            negative to indicate that the last -end sample should not be
            considered.

        step
            The spacing between the samples used for the analysis

        select
            A list of atom indexes that are considered for the computation
            of the spectrum. If not given, all atoms are used.

        path
            The path of the dataset that contains the time dependent data in
            the HDF5 file. The first axis of the array must be the time
            axis.

        mw
            If mass_weighted is True, the covariance matrix is mass-weighted.

        temp
            Temperature at which the simulation is carried out, necessary to determine the frequencies
    """
    if cov_mat is None:
        if f is None:
            AssertionError('No covariance matrix nor h5.File instance provided.')
        else:
            with log.section('PCA'):
                log('Calculating covariance matrix')
                cov_mat, q_ref = calc_cov_mat(f, q_ref, start, end, step, select, path, mw)

    with log.section('PCA'):
        log('Diagonalizing the covariance matrix')
        # Eigenvalue decomposition
        eigval, eigvec = np.linalg.eigh(cov_mat)
        # Order the eigenvalues in decreasing order
        idx = eigval.argsort()[::-1]
        eigval = eigval[idx]
        eigvec = eigvec[:,idx]

        # Create output HDF5 file
        with h5.File(f_target, 'w') as g:
            pca = g.create_group('pca')
            # Output reference structure q_ref
            pca.create_dataset('q_ref', data=q_ref)
            # Output covariance matrix
            pca.create_dataset('cov_matrix', data=cov_mat)
            # Output eigenvectors in columns
            pca.create_dataset('pm', data=eigvec)
            # Output eigenvalues
            pca.create_dataset('eigvals', data=eigval)

            log('Determining inverse of the covariance matrix')
            # Process matrix to determine inverse
            # First, project out the three zero eigenvalues (translations)
            eigvec_reduced = eigvec[:,:-3]
            eigval_reduced = eigval[:-3]

            # Second, calculate the reduced covariance matrix and its inverse
            cov_mat_reduced = np.dot(np.dot(eigvec_reduced, np.diag(eigval_reduced)), eigvec_reduced.T)
            cov_mat_inverse = np.dot(np.dot(eigvec_reduced, np.diag(1/eigval_reduced)), eigvec_reduced.T)
            pca.create_dataset('cov_mat_red', data=cov_mat_reduced)
            pca.create_dataset('cov_mat_inv', data=cov_mat_inverse)

            # Third, if the temperature is specified, calculate the frequencies
            # (the zero frequencies are mentioned last so that their index corresponds to the principal modes)
            if temp is not None:
                log('Determining frequencies')
                frequencies = np.append(np.sqrt(boltzmann*temp/eigval_reduced)/(2*np.pi), np.repeat(0,3))
                pca.create_dataset('freqs', data=frequencies)

    return eigval, eigvec
Esempio n. 46
0
def dlpoly_history_to_hdf5(f, fn_history, sub=slice(None), pos_unit=angstrom,
    vel_unit=angstrom/picosecond, frc_unit=amu*angstrom/picosecond**2,
    time_unit=picosecond, mass_unit=amu):
    """Convert DLPolay History trajectory file to Yaff HDF5 format.

       **Arguments:**

       f
            An open and writable HDF5 file.

       fn_history
            The filename of the DLPOLY history file.

       **Optional arguments:**

       sub
            The sub argument for the DLPolyHistoryReader. This must be a slice
            object that defines the subsampling of the samples from the history
            file. By default all frames are read.

       pos_unit, vel_unit, frc_unit, time_unit and mass_unit
            The units used in the dlpoly history file. The default values
            correspond to the defaults used in DLPOLY.

       This routine will also test the consistency of the row attribute of the
       trajectory group. If some trajectory data is already present, it will be
       replaced by the new data. It is highly recommended to first initialize
       the HDF5 file with the ``to_hdf5`` method of the System class.
    """
    with log.section('DPH5'):
        if log.do_medium:
            log('Loading DLPOLY history file \'%s\' into \'trajectory\' of HDF5 file \'%s\'' % (
                fn_history, f.filename
            ))

        # Take care of the data group
        tgrp = get_trajectory_group(f)

        # Open the history file for reading
        hist_reader = DLPolyHistoryReader(fn_history, sub, pos_unit, vel_unit,
                                          frc_unit, time_unit, mass_unit)

        # Take care of the datasets that should always be present
        natom = hist_reader.num_atoms
        dss = get_trajectory_datasets(
            tgrp,
            ('step', (1,)),
            ('time', (1,)),
            ('cell', (3,3)),
            ('pos', (natom, 3)),
        )
        ds_step, ds_time, ds_cell, ds_pos = dss

        # Take care of optional data sets
        if hist_reader.keytrj > 0:
            ds_vel = get_trajectory_datasets(tgrp, ('vel', (natom, 3)))[0]
            dss.append(ds_vel)
        if hist_reader.keytrj > 1:
            ds_frc = get_trajectory_datasets(tgrp, ('frc', (natom, 3)))[0]
            dss.append(ds_frc)

        # Decide on the first row to start writing data
        row = get_last_trajectory_row(dss)

        # Load data
        for frame in hist_reader:
            write_to_dataset(ds_step, frame["step"], row)
            write_to_dataset(ds_time, frame["time"], row)
            write_to_dataset(ds_cell, frame["cell"].T, row)
            write_to_dataset(ds_pos, frame["pos"], row)
            if hist_reader.keytrj > 0:
                write_to_dataset(ds_vel, frame["vel"], row)
            if hist_reader.keytrj > 1:
                write_to_dataset(ds_frc, frame["frc"], row)
            row += 1

        # Check number of rows
        check_trajectory_rows(tgrp, dss, row)
Esempio n. 47
0
File: cp2k.py Progetto: boegel/yaff
def cp2k_ener_to_hdf5(f, fn_ener, sub=slice(None)):
    """Convert a CP2K energy trajectory file to Yaff HDF5 format.

       **Arguments:**

       f
            An open and writable HDF5 file.

       fn_ener
            The filename of the CP2K energy trajectory file.

       **Optional arguments:**

       sub
            This must be a slice object that defines the sub-sampling of the
            CP2K energy file. By default all time steps are read.

       This routine will also test the consistency of the row attribute of the
       trajectory group. If some trajectory data is already present, it will be
       replaced by the new data. Furthermore, this routine also checks the
       header of the CP2K energy file to make sure the values are interpreted
       correctly.

       It is highly recommended to first initialize the HDF5 file with the
       ``to_hdf5`` method of the System class.
    """
    with log.section('CP2KEH5'):
        if log.do_medium:
            log('Loading CP2K energy file \'%s\' into \'trajectory\' of HDF5 file \'%s\''
                % (fn_ener, f.filename))

        # Take care of the data group
        tgrp = get_trajectory_group(f)

        # Take care of the datasets
        dss = get_trajectory_datasets(
            tgrp,
            ('step', (1, )),
            ('time', (1, )),
            ('ekin', (1, )),
            ('temp', (1, )),
            ('epot', (1, )),
            ('econs', (1, )),
        )
        ds_step, ds_time, ds_ke, ds_temp, ds_pe, ds_cq = dss

        # Fill the datasets with data.
        row = get_last_trajectory_row(dss)
        counter = 0
        fin = file(fn_ener)

        # check header line
        line = fin.next()
        words = line.split()
        if words[0] != '#':
            raise ValueError(
                'The first line in the energies file should be a header line starting with #.'
            )
        if words[3] != 'Time[fs]' or words[4] != 'Kin.[a.u.]' or \
           words[5] != 'Temp[K]' or words[6] != 'Pot.[a.u.]' or \
           words[7] + ' ' + words[8] != 'Cons Qty[a.u.]':
            raise ValueError(
                'The fields in the header line indicate that this file contains unsupported data.'
            )

        # Load lines
        for line in fin:
            if slice_match(sub, counter):
                words = line.split()
                write_to_dataset(ds_step, float(words[0]), row)
                write_to_dataset(ds_time, float(words[1]) * femtosecond, row)
                write_to_dataset(ds_ke, float(words[2]), row)
                write_to_dataset(ds_temp, float(words[3]), row)
                write_to_dataset(ds_pe, float(words[4]), row)
                write_to_dataset(ds_cq, float(words[5]), row)
                row += 1
            counter += 1
        fin.close()

        # Check number of rows
        check_trajectory_rows(tgrp, dss, row)
Esempio n. 48
0
def write_lammps_table(ff,
                       fn='lammps.table',
                       rmin=0.50 * angstrom,
                       nrows=2500,
                       unit_style='electron'):
    '''
       Write tables containing noncovalent interactions for LAMMPS.
       For every pair of ffatypes, a separate table is generated.
       Because electrostatic interactions require a specific treatment, point-
       charge electrostatics are NOT included in the tables.

       When distributed charge distributions (e.g. Gaussian) are used, this
       complicates matters. LAMMPS will still only treat point-charge
       electrostatics using a dedicated method (e.g. Ewald or PPPM), so the
       table has to contain the difference between the distributed charges and
       the point charge electrostatic interactions. This also means that every
       ffatype need a unique charge distribution, i.e. all atoms of the same
       atom type need to have the same charge and Gaussian radius.

       All pair potentials contributing to the table need to have the same
       scalings for near-neighbor interactions; this is however independent
       of the generation of the table and is dealt with elsewhere

       **Arguments:**

       ff
            Yaff ForceField instance

       **Optional arguments:**

       fn
            Filename where tables will be stored

    '''
    # Find out if we are dealing with electrostatics from distributed charges
    corrections = []
    for part in ff.parts:
        if part.name == 'pair_ei':
            if np.any(part.pair_pot.radii != 0.0):
                # Create a ForcePart with electrostatics from distributed
                # charges, completely in real space.
                pair_pot_dist = PairPotEI(part.pair_pot.charges,
                                          0.0,
                                          part.pair_pot.rcut,
                                          tr=part.pair_pot.get_truncation(),
                                          dielectric=part.pair_pot.dielectric,
                                          radii=part.pair_pot.radii)
                fp_dist = ForcePartPair(ff.system, ff.nlist, part.scalings,
                                        pair_pot_dist)
                corrections.append((fp_dist, 1.0))
                # Create a ForcePart with electrostatics from point
                # charges, completely in real space.
                pair_pot_point = PairPotEI(part.pair_pot.charges,
                                           0.0,
                                           part.pair_pot.rcut,
                                           tr=part.pair_pot.get_truncation(),
                                           dielectric=part.pair_pot.dielectric)
                fp_point = ForcePartPair(ff.system, ff.nlist, part.scalings,
                                         pair_pot_point)
                corrections.append((fp_point, -1.0))
    # Find the largest cut-off
    rmax = 0.0
    for part in ff.parts:
        if part.name.startswith('pair_'):
            if part.name == 'pair_ei' and len(corrections) == 0: continue
            rmax = np.amax([rmax, part.pair_pot.rcut])
    # Get LAMMPS ffatypes
    ffatypes, ffatype_ids = get_lammps_ffatypes(ff)
    # Select atom pairs for each pair of atom types
    ffa_pairs = []
    for i in range(len(ffatypes)):
        index0 = np.where(ffatype_ids == i)[0][0]
        for j in range(i, len(ffatypes)):
            index1 = -1
            candidates = np.where(ffatype_ids == j)[0]
            for cand in candidates:
                if cand==index0 or cand in ff.system.neighs1[index0] or\
                    cand in ff.system.neighs2[index0] or cand in ff.system.neighs3[index0] or\
                    cand in ff.system.neighs4[index0]:
                    continue
                else:
                    index1 = cand
                    break
            if index1 == -1:
                log("ERROR constructing LAMMPS tables: there is no pair of atom types %s-%s which are not near neighbors"
                    % (ffatypes[i], ffatypes[j]))
                log("Consider using a supercell to fix this problem")
                raise ValueError
            ffa_pairs.append([index0, index1])
    if log.do_medium:
        with log.section('LAMMPS'):
            log("Generating LAMMPS table with covalent interactions")
            log.hline()
            log("rmin = %s | rmax = %s" % (log.length(rmin), log.length(rmax)))
    # We only consider one neighbor interaction
    ff.compute()
    ff.nlist.nneigh = 1
    # Construct array of evenly spaced values
    distances = np.linspace(rmin, rmax, nrows)
    ftab = open(fn, 'w')
    ftab.write("# LAMMPS tabulated potential generated by Yaff\n")
    ftab.write("# All quantities in atomic units\n")
    ftab.write(
        "# The names of the tables refer to the ffatype_ids that have to be used in the Yaff system\n"
    )
    ftab.write("#%4s %13s %21s %21s\n" % ("i", "d", "V", "F"))
    # Loop over all atom pairs
    for index0, index1 in ffa_pairs:
        energies = []
        for d in distances:
            gposnn = np.zeros(ff.system.pos.shape, float)
            ff.nlist.neighs[0] = (index0, index1, d, 0.0, 0.0, d, 0, 0, 0)
            energy = 0.0
            for part in ff.parts:
                if not part.name.startswith('pair'): continue
                if part.name == 'pair_ei': continue
                energy += part.compute(gpos=gposnn)
            for part, sign in corrections:
                gposcorr = np.zeros(ff.system.pos.shape, float)
                energy += sign * part.compute(gpos=gposcorr)
                gposnn[:] += sign * gposcorr
            row = [d, energy, gposnn[index0, 2]]
            energies.append(row)
        energies = np.asarray(energies)
        ffai = ffatypes[ffatype_ids[index0]]
        ffaj = ffatypes[ffatype_ids[index1]]
        if np.all(energies[:, 1] == 0.0):
            log.warn("Noncovalent energies between atoms %d (%s) and %d (%s) are zero"\
                    % (index0,ffai,index1,ffaj))
        if np.all(energies[:, 2] == 0.0):
            log.warn("Noncovalent forces between atoms %d (%s) and %d (%s) are zero"\
                    % (index0,ffai,index1,ffaj))
        if ffai > ffaj:
            name = '%s---%s' % (str(ffai), str(ffaj))
        else:
            name = '%s---%s' % (str(ffaj), str(ffai))
        ftab.write("%s\nN %d R %13.8f %13.8f\n\n" %
                   (name, nrows, rmin / lammps_units[unit_style]['distance'],
                    rmax / lammps_units[unit_style]['distance']))
        for irow, row in enumerate(energies):
            ftab.write(
                "%05d %+13.8f %+21.12f %+21.12f\n" %
                (irow + 1, row[0] / lammps_units[unit_style]['distance'],
                 row[1] / lammps_units[unit_style]['energy'],
                 row[2] / lammps_units[unit_style]['energy'] *
                 lammps_units[unit_style]['distance']))
        if log.do_medium:
            log("%s done" % name)
Esempio n. 49
0
    def check(self):
        """Perform a slow internal consistency test.

           Use this for debugging only. It is assumed that self.rmax is set correctly.
        """
        # 0) Some initial tests
        assert (
            (self.neighs['a'][:self.nneigh] > self.neighs['b'][:self.nneigh]) |
            (self.neighs['r0'][:self.nneigh] != 0) |
            (self.neighs['r1'][:self.nneigh] != 0) |
            (self.neighs['r2'][:self.nneigh] != 0)).all()
        # A) transform the current nlist into a set
        actual = self.to_dictionary()
        # B) Define loops of cell vectors
        if self.system.cell.nvec == 3:

            def rloops():
                for r2 in xrange(0, self.rmax[2] + 1):
                    if r2 == 0:
                        r1_start = 0
                    else:
                        r1_start = -self.rmax[1]
                    for r1 in xrange(r1_start, self.rmax[1] + 1):
                        if r2 == 0 and r1 == 0:
                            r0_start = 0
                        else:
                            r0_start = -self.rmax[0]
                        for r0 in xrange(r0_start, self.rmax[0] + 1):
                            yield r0, r1, r2
        elif self.system.cell.nvec == 2:

            def rloops():
                for r1 in xrange(0, self.rmax[1] + 1):
                    if r1 == 0:
                        r0_start = 0
                    else:
                        r0_start = -self.rmax[0]
                    for r0 in xrange(r0_start, self.rmax[0] + 1):
                        yield r0, r1, 0

        elif self.system.cell.nvec == 1:

            def rloops():
                for r0 in xrange(0, self.rmax[0] + 1):
                    yield r0, 0, 0
        else:

            def rloops():
                yield 0, 0, 0

        # C) Compute the nlists the slow way
        validation = {}
        nvec = self.system.cell.nvec
        for r0, r1, r2 in rloops():
            for a in xrange(self.system.natom):
                for b in xrange(a + 1):
                    if r0 != 0 or r1 != 0 or r2 != 0:
                        signs = [1, -1]
                    elif a > b:
                        signs = [1]
                    else:
                        continue
                    for sign in signs:
                        delta = self.system.pos[b] - self.system.pos[a]
                        self.system.cell.mic(delta)
                        delta *= sign
                        if nvec > 0:
                            self.system.cell.add_vec(
                                delta,
                                np.array([r0, r1, r2])[:nvec])
                        d = np.linalg.norm(delta)
                        if d < self.rcut + self.skin:
                            if sign == 1:
                                key = a, b, r0, r1, r2
                            else:
                                key = b, a, r0, r1, r2
                            value = np.array([d, delta[0], delta[1], delta[2]])
                            validation[key] = value

        # D) Compare
        wrong = False
        with log.section('NLIST'):
            for key0, value0 in validation.iteritems():
                value1 = actual.pop(key0, None)
                if value1 is None:
                    log('Missing:  ', key0)
                    log('  Validation %s %s %s %s' %
                        (log.length(value0[0]), log.length(value0[1]),
                         log.length(value0[2]), log.length(value0[3])))
                    wrong = True
                elif abs(value0 -
                         value1).max() > 1e-10 * log.length.conversion:
                    log('Different:', key0)
                    log('  Actual     %s %s %s %s' %
                        (log.length(value1[0]), log.length(value1[1]),
                         log.length(value1[2]), log.length(value1[3])))
                    log('  Validation %s %s %s %s' %
                        (log.length(value0[0]), log.length(value0[1]),
                         log.length(value0[2]), log.length(value0[3])))
                    log('  Difference %10.3e %10.3e %10.3e %10.3e' % tuple(
                        (value0 - value1) / log.length.conversion))
                    log('  AbsMaxDiff %10.3e' %
                        (abs(value0 - value1).max() / log.length.conversion))
                    wrong = True
            for key1, value1 in actual.iteritems():
                log('Redundant:', key1)
                log('  Actual     %s %s %s %s' %
                    (log.length(value1[0]), log.length(value1[1]),
                     log.length(value1[2]), log.length(value1[3])))
                wrong = True
        assert not wrong
Esempio n. 50
0
File: pca.py Progetto: boegel/yaff
def pca_projection(f_target,
                   f,
                   pm,
                   start=0,
                   end=None,
                   step=1,
                   select=None,
                   path='trajectory/pos',
                   mw=True):
    """
        Determines the principal components of an MD simulation

        **Arguments:**

        f_target
            Path to an h5.File instance to which the results are written.

        f
            An h5.File instance containing the trajectory data.

        pm
            An array containing the principal modes in its columns

        **Optional arguments:**

        start
            The first sample to be considered for analysis. This may be
            negative to indicate that the analysis should start from the
            -start last samples.

        end
            The last sample to be considered for analysis. This may be
            negative to indicate that the last -end sample should not be
            considered.

        step
            The spacing between the samples used for the analysis

        select
            A list of atom indexes that are considered for the computation
            of the spectrum. If not given, all atoms are used.

        path
            The path of the dataset that contains the time dependent data in
            the HDF5 file. The first axis of the array must be the time
            axis.

        mw
            If mass_weighted is True, the covariance matrix is mass-weighted.
    """
    # Load in the relevant data
    q = f[path][start:end:step, :, :]
    # Select the given atoms
    if select is not None:
        q = q[:, select, :]
    # Reshape such that all Cartesian coordinates are treated equally
    q = q.reshape(q.shape[0], -1)

    # If necessary, weight with the mass
    if mw:
        # Select the necessary masses
        masses = f['system/masses']
        if select is not None:
            masses = masses[select]
        # Repeat d times, with d the dimension
        masses = np.repeat(masses, 3)
        # Reweight with the masses
        q *= np.sqrt(masses)

    # Calculation of the principal components: projection of each q_j on the principal modes
    with log.section('PCA'):
        log('Determining principal components')
        prin_comp = np.dot(q, pm)

    # Create output HDF5 file
    g = h5.File(f_target, 'a')
    if not 'pca' in g:
        pca = g.create_group('pca')
    else:
        pca = g['pca']
    pca.create_dataset('pc', data=prin_comp)

    return pca
Esempio n. 51
0
File: pca.py Progetto: boegel/yaff
def write_principal_mode(f,
                         f_pca,
                         index,
                         n_frames=100,
                         select=None,
                         mw=True,
                         scaling=1.):
    """
        Writes out one xyz file per principal mode given in index

        **Arguments:**

        f
            Path to an h5.File instance containing the original data.

        f_pca
            Path to an h5.File instance containing the PCA, with reference structure, eigenvalues
            and principal modes.

        index
            An array containing the principal modes which need to be written out.

        **Optional arguments:**

        n_frames
            The number of frames in each xyz file.

        select
            A list of atom indexes that are considered for the computation
            of the spectrum. If not given, all atoms are used.

        mw
            If mass_weighted is True, the covariance matrix is assumed to be mass-weighted.

        scaling
            Scaling factor applied to the maximum deviation of the principal mode (i.e. the maximum
            principal component for that mode)
    """

    # Load in the relevant data
    # Atom numbers, masses and initial frame
    numbers = f['system/numbers']
    masses = f['system/masses']
    pos = f['trajectory/pos']
    if select is not None:
        numbers = numbers[select]
        masses = masses[select]
        pos = pos[:, select, :]
    masses = np.repeat(masses, 3)
    # Data from the PC analysis
    grp = f_pca['pca']
    # The selected principal modes
    pm = grp['pm'][:, index]
    # The corresponding eigenvalues
    eigval = grp['eigvals'][index]
    # And the principal components
    pc = grp['pc'][:, index]

    with log.section('PCA'):
        for i in xrange(len(index)):
            log('Writing out principal mode %s' % index[i])
            if eigval[i] < 0:
                Warning('Negative eigenvalue encountered, skipping this entry')
                break
            # Determine maximum fluctuation (in units of meter*sqrt(kilogram))
            max_fluct = np.max(np.abs(pc[:, i]))
            # Initialize XYZWriter from molmod package
            xw = XYZWriter('pm_%s.xyz' % index[i],
                           [pd[number].symbol for number in numbers])
            # Determine index in trajectory closest to rest state, and the corresponding positions
            ind_min = np.argmin(np.abs(pc[:, i]))
            r_ref = pos[ind_min, :, :]
            for j in xrange(n_frames):
                q_var = scaling * pm[:, i] * max_fluct * (2. * j -
                                                          n_frames) / n_frames
                if mw:
                    q_var /= np.sqrt(masses)
                r = r_ref + q_var.reshape(-1, 3)
                xw.dump('Frame%s' % j, r)
            del xw
Esempio n. 52
0
    def check(self):
        """Perform a slow internal consistency test.

           Use this for debugging only. It is assumed that self.rmax is set correctly.
        """
        # 0) Some initial tests
        assert (
            (self.neighs['a'][:self.nneigh] > self.neighs['b'][:self.nneigh]) |
            (self.neighs['r0'][:self.nneigh] != 0) |
            (self.neighs['r1'][:self.nneigh] != 0) |
            (self.neighs['r2'][:self.nneigh] != 0)
        ).all()
        # A) transform the current nlist into a set
        actual = self.to_dictionary()
        # B) Define loops of cell vectors
        if self.system.cell.nvec == 3:
            def rloops():
                for r2 in xrange(0, self.rmax[2]+1):
                    if r2 == 0:
                        r1_start = 0
                    else:
                        r1_start = -self.rmax[1]
                    for r1 in xrange(r1_start, self.rmax[1]+1):
                        if r2 == 0 and r1 == 0:
                            r0_start = 0
                        else:
                            r0_start = -self.rmax[0]
                        for r0 in xrange(r0_start, self.rmax[0]+1):
                            yield r0, r1, r2
        elif self.system.cell.nvec == 2:
            def rloops():
                for r1 in xrange(0, self.rmax[1]+1):
                    if r1 == 0:
                        r0_start = 0
                    else:
                        r0_start = -self.rmax[0]
                    for r0 in xrange(r0_start, self.rmax[0]+1):
                        yield r0, r1, 0

        elif self.system.cell.nvec == 1:
            def rloops():
                for r0 in xrange(0, self.rmax[0]+1):
                    yield r0, 0, 0
        else:
            def rloops():
                yield 0, 0, 0

        # C) Compute the nlists the slow way
        validation = {}
        nvec = self.system.cell.nvec
        for r0, r1, r2 in rloops():
            for a in xrange(self.system.natom):
                for b in xrange(a+1):
                    if r0!=0 or r1!=0 or r2!=0:
                        signs = [1, -1]
                    elif a > b:
                        signs = [1]
                    else:
                        continue
                    for sign in signs:
                        delta = self.system.pos[b] - self.system.pos[a]
                        self.system.cell.mic(delta)
                        delta *= sign
                        if nvec > 0:
                            self.system.cell.add_vec(delta, np.array([r0, r1, r2])[:nvec])
                        d = np.linalg.norm(delta)
                        if d < self.rcut + self.skin:
                            if sign == 1:
                                key = a, b, r0, r1, r2
                            else:
                                key = b, a, r0, r1, r2
                            value = np.array([d, delta[0], delta[1], delta[2]])
                            validation[key] = value

        # D) Compare
        wrong = False
        with log.section('NLIST'):
            for key0, value0 in validation.iteritems():
                value1 = actual.pop(key0, None)
                if value1 is None:
                    log('Missing:  ', key0)
                    log('  Validation %s %s %s %s' % (
                        log.length(value0[0]), log.length(value0[1]),
                        log.length(value0[2]), log.length(value0[3])
                    ))
                    wrong = True
                elif abs(value0 - value1).max() > 1e-10*log.length.conversion:
                    log('Different:', key0)
                    log('  Actual     %s %s %s %s' % (
                        log.length(value1[0]), log.length(value1[1]),
                        log.length(value1[2]), log.length(value1[3])
                    ))
                    log('  Validation %s %s %s %s' % (
                        log.length(value0[0]), log.length(value0[1]),
                        log.length(value0[2]), log.length(value0[3])
                    ))
                    log('  Difference %10.3e %10.3e %10.3e %10.3e' %
                        tuple((value0 - value1)/log.length.conversion)
                    )
                    log('  AbsMaxDiff %10.3e' %
                        (abs(value0 - value1).max()/log.length.conversion)
                    )
                    wrong = True
            for key1, value1 in actual.iteritems():
                log('Redundant:', key1)
                log('  Actual     %s %s %s %s' % (
                    log.length(value1[0]), log.length(value1[1]),
                    log.length(value1[2]), log.length(value1[3])
                ))
                wrong = True
        assert not wrong
Esempio n. 53
0
File: pca.py Progetto: boegel/yaff
def calc_pca(f_target,
             cov_mat=None,
             f=None,
             q_ref=None,
             start=0,
             end=None,
             step=1,
             select=None,
             path='trajectory/pos',
             mw=True,
             temp=None):
    """
        Performs a principle component analysis of the given trajectory.

        **Arguments:**

        f_target
            Path to an h5.File instance to which the results are written.

        **Optional arguments:**

        cov_mat
            The covariance matrix, if already calculated. If not provided,
            the covariance matrix will be calculatd based on the file f.

        f
            An h5.File instance containing the trajectory data.

        q_ref
            Reference vector of the positions. If not provided, the ensemble
            average is taken.

        start
            The first sample to be considered for analysis. This may be
            negative to indicate that the analysis should start from the
            -start last samples.

        end
            The last sample to be considered for analysis. This may be
            negative to indicate that the last -end sample should not be
            considered.

        step
            The spacing between the samples used for the analysis

        select
            A list of atom indexes that are considered for the computation
            of the spectrum. If not given, all atoms are used.

        path
            The path of the dataset that contains the time dependent data in
            the HDF5 file. The first axis of the array must be the time
            axis.

        mw
            If mass_weighted is True, the covariance matrix is mass-weighted.

        temp
            Temperature at which the simulation is carried out, necessary to determine the frequencies
    """
    if cov_mat is None:
        if f is None:
            AssertionError(
                'No covariance matrix nor h5.File instance provided.')
        else:
            with log.section('PCA'):
                log('Calculating covariance matrix')
                cov_mat, q_ref = calc_cov_mat(f, q_ref, start, end, step,
                                              select, path, mw)

    with log.section('PCA'):
        log('Diagonalizing the covariance matrix')
        # Eigenvalue decomposition
        eigval, eigvec = np.linalg.eigh(cov_mat)
        # Order the eigenvalues in decreasing order
        idx = eigval.argsort()[::-1]
        eigval = eigval[idx]
        eigvec = eigvec[:, idx]

        # Create output HDF5 file
        g = h5.File(f_target, 'w')
        pca = g.create_group('pca')
        # Output reference structure q_ref
        pca.create_dataset('q_ref', data=q_ref)
        # Output covariance matrix
        pca.create_dataset('cov_matrix', data=cov_mat)
        # Output eigenvectors in columns
        pca.create_dataset('pm', data=eigvec)
        # Output eigenvalues
        pca.create_dataset('eigvals', data=eigval)

        log('Determining inverse of the covariance matrix')
        # Process matrix to determine inverse
        # First, project out the three zero eigenvalues (translations)
        eigvec_reduced = eigvec[:, :-3]
        eigval_reduced = eigval[:-3]

        # Second, calculate the reduced covariance matrix and its inverse
        cov_mat_reduced = np.dot(
            np.dot(eigvec_reduced, np.diag(eigval_reduced)), eigvec_reduced.T)
        cov_mat_inverse = np.dot(
            np.dot(eigvec_reduced, np.diag(1 / eigval_reduced)),
            eigvec_reduced.T)
        pca.create_dataset('cov_mat_red', data=cov_mat_reduced)
        pca.create_dataset('cov_mat_inv', data=cov_mat_inverse)

        # Third, if the temperature is specified, calculate the frequencies
        # (the zero frequencies are mentioned last so that their index corresponds to the principal modes)
        if temp is not None:
            log('Determining frequencies')
            frequencies = np.append(
                np.sqrt(boltzmann * temp / eigval_reduced) / (2 * np.pi),
                np.repeat(0, 3))
            pca.create_dataset('freqs', data=frequencies)

    return eigval, eigvec
Esempio n. 54
0
    def check_mic(self, system):
        '''Check if each scale2 and scale3 are uniquely defined.

           **Arguments:**

           system
                An instance of the system class, i.e. the one that is used to
                create this scaling object.

           This check is done by constructing for each scaled pair, all possible
           bond paths between the two atoms. For each path, the bond vectors
           (after applying the minimum image convention) are added. If for a
           given pair, these sums of bond vectors differ between all possible
           paths, the differences are expanded in cell vectors which can be used
           to construct a proper supercell in which scale2 and scale3 pairs are
           all uniquely defined.
        '''
        if system.cell.nvec == 0:
            return
        troubles = False
        with log.section('SCALING'):
            for i0, i1, scale, nbond in self.stab:
                if nbond == 1:
                    continue
                all_deltas = []
                paths = []
                for path in iter_paths(system, i0, i1, nbond):
                    delta_total = 0
                    for j0 in range(nbond):
                        j1 = j0 + 1
                        delta = system.pos[path[j0]] - system.pos[path[j1]]
                        system.cell.mic(delta)
                        delta_total += delta
                    all_deltas.append(delta_total)
                    paths.append(path)
                all_deltas = np.array(all_deltas)
                if abs(all_deltas.mean(axis=0) - all_deltas).max() > 1e-10:
                    troubles = True
                    if log.do_warning:
                        log.warn('Troublesome pair scaling detected.')
                    log('The following bond paths connect the same pair of '
                        'atoms, yet the relative vectors are different.')
                    for ipath in range(len(paths)):
                        log('%2i %27s %10s %10s %10s' % (
                            ipath,
                            ','.join(str(index) for index in paths[ipath]),
                            log.length(all_deltas[ipath, 0]),
                            log.length(all_deltas[ipath, 1]),
                            log.length(all_deltas[ipath, 2]),
                        ))
                    log('Differences between relative vectors in fractional '
                        'coordinates:')
                    for ipath0 in range(1, len(paths)):
                        for ipath1 in range(ipath0):
                            diff = all_deltas[ipath0] - all_deltas[ipath1]
                            diff_frac = np.dot(system.cell.gvecs, diff)
                            log('%2i %2i %10.4f %10.4f %10.4f' %
                                (ipath0, ipath1, diff_frac[0], diff_frac[1],
                                 diff_frac[2]))
                    log.blank()
        if troubles:
            raise AssertionError(
                'Due to the small spacing between some crystal planes, the scaling of non-bonding interactions will not work properly. Use a supercell to avoid this problem.'
            )
Esempio n. 55
0
File: xyz.py Progetto: boegel/yaff
def xyz_to_hdf5(f, fn_xyz, sub=slice(None), file_unit=angstrom, name='pos'):
    """Convert XYZ trajectory file to Yaff HDF5 format.

       **Arguments:**

       f
            An open and writable HDF5 file.

       fn_xyz
            The filename of the XYZ trajectory file.

       **Optional arguments:**

       sub
            The sub argument for the XYZReader. This must be a slice object that
            defines the subsampling of the XYZ file reader. By default all
            frames are read.

       file_unit
            The unit of the data in the XYZ file. [default=angstrom]

       name
            The name of the HDF5 dataset where the trajectory is stored. This
            array is stored in the 'trajectory' group.

       This routine will also test the consistency of the row attribute of the
       trajectory group. If some trajectory data is already present, it will be
       replaced by the new data. It is highly recommended to first initialize
       the HDF5 file with the ``to_hdf5`` method of the System class.
    """
    with log.section('XYZH5'):
        if log.do_medium:
            log('Loading XYZ file \'%s\' into \'trajectory/%s\' of HDF5 file \'%s\''
                % (fn_xyz, name, f.filename))

        # First make sure the HDF5 file has a system description that is consistent
        # with the XYZ file.
        if 'system' not in f:
            raise ValueError('The HDF5 file must contain a system group.')
        if 'numbers' not in f['system']:
            raise ValueError(
                'The HDF5 file must have a system group with atomic numbers.')

        xyz_reader = XYZReader(fn_xyz, sub=sub, file_unit=file_unit)
        if len(xyz_reader.numbers) != len(f['system/numbers']):
            raise ValueError(
                'The number of atoms in the HDF5 and the XYZ files does not match.'
            )
        if (xyz_reader.numbers != f['system/numbers']).any():
            log.warn(
                'The atomic numbers of the HDF5 and XYZ file do not match.')

        # Take care of the trajectory group
        tgrp = get_trajectory_group(f)

        # Take care of the dataset
        ds, = get_trajectory_datasets(tgrp,
                                      (name, (len(xyz_reader.numbers), 3)))

        # Fill the dataset with data.
        row = get_last_trajectory_row([ds])
        for title, coordinates in xyz_reader:
            write_to_dataset(ds, coordinates, row)
            row += 1

        # Check number of rows
        check_trajectory_rows(tgrp, [ds], row)
Esempio n. 56
0
def dlpoly_history_to_hdf5(f,
                           fn_history,
                           sub=slice(None),
                           pos_unit=angstrom,
                           vel_unit=angstrom / picosecond,
                           frc_unit=amu * angstrom / picosecond**2,
                           time_unit=picosecond,
                           mass_unit=amu):
    """Convert DLPolay History trajectory file to Yaff HDF5 format.

       **Arguments:**

       f
            An open and writable HDF5 file.

       fn_history
            The filename of the DLPOLY history file.

       **Optional arguments:**

       sub
            The sub argument for the DLPolyHistoryReader. This must be a slice
            object that defines the subsampling of the samples from the history
            file. By default all frames are read.

       pos_unit, vel_unit, frc_unit, time_unit and mass_unit
            The units used in the dlpoly history file. The default values
            correspond to the defaults used in DLPOLY.

       This routine will also test the consistency of the row attribute of the
       trajectory group. If some trajectory data is already present, it will be
       replaced by the new data. It is highly recommended to first initialize
       the HDF5 file with the ``to_hdf5`` method of the System class.
    """
    with log.section('DPH5'):
        if log.do_medium:
            log('Loading DLPOLY history file \'%s\' into \'trajectory\' of HDF5 file \'%s\''
                % (fn_history, f.filename))

        # Take care of the data group
        tgrp = get_trajectory_group(f)

        # Open the history file for reading
        hist_reader = DLPolyHistoryReader(fn_history, sub, pos_unit, vel_unit,
                                          frc_unit, time_unit, mass_unit)

        # Take care of the datasets that should always be present
        natom = hist_reader.num_atoms
        dss = get_trajectory_datasets(
            tgrp,
            ('step', (1, )),
            ('time', (1, )),
            ('cell', (3, 3)),
            ('pos', (natom, 3)),
        )
        ds_step, ds_time, ds_cell, ds_pos = dss

        # Take care of optional data sets
        if hist_reader.keytrj > 0:
            ds_vel = get_trajectory_datasets(tgrp, ('vel', (natom, 3)))[0]
            dss.append(ds_vel)
        if hist_reader.keytrj > 1:
            ds_frc = get_trajectory_datasets(tgrp, ('frc', (natom, 3)))[0]
            dss.append(ds_frc)

        # Decide on the first row to start writing data
        row = get_last_trajectory_row(dss)

        # Load data
        for frame in hist_reader:
            write_to_dataset(ds_step, frame["step"], row)
            write_to_dataset(ds_time, frame["time"], row)
            write_to_dataset(ds_cell, frame["cell"].T, row)
            write_to_dataset(ds_pos, frame["pos"], row)
            if hist_reader.keytrj > 0:
                write_to_dataset(ds_vel, frame["vel"], row)
            if hist_reader.keytrj > 1:
                write_to_dataset(ds_frc, frame["frc"], row)
            row += 1

        # Check number of rows
        check_trajectory_rows(tgrp, dss, row)
Esempio n. 57
0
File: pca.py Progetto: molmod/yaff
def write_principal_mode(f, f_pca, index, n_frames=100, select=None, mw=True, scaling=1.):
    """
        Writes out one xyz file per principal mode given in index

        **Arguments:**

        f
            Path to an h5.File instance containing the original data.

        f_pca
            Path to an h5.File instance containing the PCA, with reference structure, eigenvalues
            and principal modes.

        index
            An array containing the principal modes which need to be written out.

        **Optional arguments:**

        n_frames
            The number of frames in each xyz file.

        select
            A list of atom indexes that are considered for the computation
            of the spectrum. If not given, all atoms are used.

        mw
            If mass_weighted is True, the covariance matrix is assumed to be mass-weighted.

        scaling
            Scaling factor applied to the maximum deviation of the principal mode (i.e. the maximum
            principal component for that mode)
    """

    # Load in the relevant data
    # Atom numbers, masses and initial frame
    numbers = f['system/numbers']
    masses = f['system/masses']
    pos = f['trajectory/pos']
    if select is not None:
        numbers = numbers[select]
        masses = masses[select]
        pos = pos[:,select,:]
    masses = np.repeat(masses,3)
    # Data from the PC analysis
    grp = f_pca['pca']
    # The selected principal modes
    pm = grp['pm'][:,index]
    # The corresponding eigenvalues
    eigval = grp['eigvals'][index]
    # And the principal components
    pc = grp['pc'][:,index]

    with log.section('PCA'):
        for i in range(len(index)):
            log('Writing out principal mode %s' %index[i])
            if eigval[i] < 0:
                Warning('Negative eigenvalue encountered, skipping this entry')
                break
            # Determine maximum fluctuation (in units of meter*sqrt(kilogram))
            max_fluct = np.max(np.abs(pc[:,i]))
            # Initialize XYZWriter from molmod package
            xw = XYZWriter('pm_%s.xyz' %index[i], [pd[number].symbol for number in numbers])
            # Determine index in trajectory closest to rest state, and the corresponding positions
            ind_min = np.argmin(np.abs(pc[:,i]))
            r_ref = pos[ind_min,:,:]
            for j in range(n_frames):
                q_var = scaling*pm[:,i]*max_fluct*(2.*j-n_frames)/n_frames
                if mw:
                    q_var /= np.sqrt(masses)
                r = r_ref + q_var.reshape(-1,3)
                xw.dump('Frame%s' %j, r)
            del xw
Esempio n. 58
0
File: pca.py Progetto: boegel/yaff
def pca_convergence(f,
                    eq_time=0 * picosecond,
                    n_parts=None,
                    step=1,
                    fn='PCA_convergence',
                    n_bootstrap=50,
                    mw=True):
    """
    Calculates the convergence of the simulation by calculating the pca
    similarity for different subsets of the simulation.

    **Arguments:**

    f
        An h5.File instance containing the trajectory data.

    **Optional arguments:**

    eq_time
        Equilibration time, discarded from the simulation.

    n_parts
        Array containing the number of parts in which
        the total simulation is divided.

    step
        Stepsize used in the trajectory.

    fn
        Filename containing the convergence plot.

    n_bootstrap
        The number of bootstrapped trajectories.

    mw
        If mass_weighted is True, the covariance matrix is mass-weighted.
    """

    # Configure n_parts, the array containing the number of parts in which the total simulation is divided
    if n_parts is None:
        n_parts = np.array([1, 3, 10, 30, 100, 300])

    # Read in the timestep and the number of atoms
    time = f['trajectory/time']
    timestep = time[1] - time[0]
    time_length = len(time)

    # Determine the equilibration size
    eq_size = int(eq_time / timestep)

    ### ---PART A: SIMILARITY OF THE TRUE TRAJECTORY--- ###

    # Calculate the covariance matrix of the whole production run as golden standard
    covar_total, q_ref = calc_cov_mat(f, start=eq_size, step=step, mw=mw)

    # Initialize the average similarity vector of the divided trajectories
    sim_block = np.zeros(len(n_parts))
    # Calculate this average similarity vector
    for j in xrange(len(n_parts)):
        # Determine in how many parts the trajectory should be divided and the corresponding block size
        n_part = n_parts[j]
        block_size = (time_length - eq_size) / n_part
        # Calculate the n_part covariance matrices and compare with the total covariance matrix
        tot_sim_block = 0
        for i in xrange(n_part):
            start = eq_size + i * block_size
            covars, tmp = calc_cov_mat(f,
                                       start=start,
                                       end=start + block_size + 1,
                                       step=step,
                                       mw=mw)
            tot_sim_block += pca_similarity(covars, covar_total)
        # Determine the average similarity
        sim_block[j] = tot_sim_block / n_part

    ### ---PART B: SIMILARITY OF BOOTSTRAPPED TRAJECTORIES --- ###

    # Read in the positions, which will be used to generate bootstrapped trajectories
    pos = f['trajectory/pos'][eq_size:, :, :]
    pos = pos.reshape(pos.shape[0], -1)

    if mw:
        # Read in the masses of the atoms, and replicate them d times (d=dimension)
        masses = f['system/masses']
        masses = np.repeat(masses, 3)

        # Create the mass-weighted positions matrix, on which the bootstrapping will be based
        pos *= np.sqrt(masses)

    # Initialize the vector containing the average similarity over all the bootstrapped, divided trajectories
    sim_bt_all = np.zeros(len(n_parts))

    for k in xrange(n_bootstrap):
        with log.section('PCA'):
            log('Processing %s of %s bootstrapped trajectories' %
                (k + 1, n_bootstrap))
            # Create a bootstrapped trajectory bt
            pos_bt = np.zeros(pos.shape)
            random_time = random.random(time_length) * time_length
            for h in np.arange(time_length):
                pos_bt[h, :] = pos[random_time[h], :]

            # Covariance matrix of the total bootstrapped trajectory
            covar_bt_total, tmp = calc_cov_mat_internal(pos_bt)

            # Initialize the vector containing the average similarity over the different blocks,
            # for the given bootstrapped trajectory
            sim_bt = np.zeros(len(n_parts))

            for j in xrange(len(n_parts)):
                # Calculate the number of blocks, as well as the block size
                n_part = n_parts[j]
                block_size = (len(time) - eq_size) / n_part
                tot_sim_bt = 0
                # Calculate the total similarity of this number of blocks, for this bootstrapped trajectory
                for i in xrange(n_part):
                    start = eq_size + i * block_size
                    pos_bt_block = pos_bt[start:start + block_size:step]
                    covars_bt, tmp = calc_cov_mat_internal(pos_bt_block)
                    tot_sim_bt += pca_similarity(covars_bt, covar_bt_total)
                # Calculate the average similarity for this number of blocks, for this bootstrapped trajectory
                sim_bt[j] = tot_sim_bt / n_part
            sim_bt_all += sim_bt
    # Calculate the average similarity over all bootstrapped trajectories
    sim_bt_all /= n_bootstrap

    ### ---PART C: PROCESSING THE RESULTS --- ###

    pt.clf()
    pt.semilogx((time[-1] - time[0]) / n_parts / picosecond,
                sim_block / sim_bt_all, 'r-')
    pt.semilogx((time[-1] - time[0]) / n_parts / picosecond,
                sim_block / sim_bt_all, 'rs')
    pt.xlabel('Block size [ps]')
    pt.ylabel('PCA similarity (1=perfectly similar)')
    pt.title('Convergence assessment via PCA: ' + fn)
    pt.ylim([0, 1])
    pt.savefig(fn + '.png')
    pt.savefig(fn + '.pdf', format='pdf')
    return sim_block / sim_bt_all
Esempio n. 59
0
File: pca.py Progetto: molmod/yaff
def pca_convergence(f, eq_time=0*picosecond, n_parts=None, step=1, fn='PCA_convergence', n_bootstrap=50, mw=True):
    """
    Calculates the convergence of the simulation by calculating the pca
    similarity for different subsets of the simulation.

    **Arguments:**

    f
        An h5.File instance containing the trajectory data.

    **Optional arguments:**

    eq_time
        Equilibration time, discarded from the simulation.

    n_parts
        Array containing the number of parts in which
        the total simulation is divided.

    step
        Stepsize used in the trajectory.

    fn
        Filename containing the convergence plot.

    n_bootstrap
        The number of bootstrapped trajectories.

    mw
        If mass_weighted is True, the covariance matrix is mass-weighted.
    """

    # Configure n_parts, the array containing the number of parts in which the total simulation is divided
    if n_parts is None:
        n_parts = np.array([1,3,10,30,100,300])

    # Read in the timestep and the number of atoms
    time = f['trajectory/time']
    timestep = time[1] - time[0]
    time_length = len(time)

    # Determine the equilibration size
    eq_size = int(eq_time/timestep)

    ### ---PART A: SIMILARITY OF THE TRUE TRAJECTORY--- ###

    # Calculate the covariance matrix of the whole production run as golden standard
    covar_total, q_ref = calc_cov_mat(f, start=eq_size, step=step, mw=mw)

    # Initialize the average similarity vector of the divided trajectories
    sim_block = np.zeros(len(n_parts))
    # Calculate this average similarity vector
    for j in range(len(n_parts)):
        # Determine in how many parts the trajectory should be divided and the corresponding block size
        n_part = n_parts[j]
        block_size = (time_length-eq_size)//n_part
        # Calculate the n_part covariance matrices and compare with the total covariance matrix
        tot_sim_block=0
        for i in range(n_part):
            start = eq_size + i*block_size
            covars, tmp = calc_cov_mat(f, start=start, end=start+block_size+1, step=step, mw=mw)
            tot_sim_block += pca_similarity(covars, covar_total)
        # Determine the average similarity
        sim_block[j] = tot_sim_block/n_part


    ### ---PART B: SIMILARITY OF BOOTSTRAPPED TRAJECTORIES --- ###

    # Read in the positions, which will be used to generate bootstrapped trajectories
    pos = f['trajectory/pos'][eq_size:,:,:]
    pos = pos.reshape(pos.shape[0], -1)

    if mw:
        # Read in the masses of the atoms, and replicate them d times (d=dimension)
        masses = f['system/masses']
        masses = np.repeat(masses,3)

        # Create the mass-weighted positions matrix, on which the bootstrapping will be based
        pos *= np.sqrt(masses)

    # Initialize the vector containing the average similarity over all the bootstrapped, divided trajectories
    sim_bt_all = np.zeros(len(n_parts))

    for k in range(n_bootstrap):
        with log.section('PCA'):
            log('Processing %s of %s bootstrapped trajectories' %(k+1,n_bootstrap))
            # Create a bootstrapped trajectory bt
            pos_bt = np.zeros(pos.shape)
            random_time = random.random(time_length)*time_length
            for h in np.arange(time_length):
                pos_bt[h,:] = pos[random_time[h],:]

            # Covariance matrix of the total bootstrapped trajectory
            covar_bt_total, tmp = calc_cov_mat_internal(pos_bt)

            # Initialize the vector containing the average similarity over the different blocks,
            # for the given bootstrapped trajectory
            sim_bt = np.zeros(len(n_parts))

            for j in range(len(n_parts)):
                # Calculate the number of blocks, as well as the block size
                n_part = n_parts[j]
                block_size = (len(time)-eq_size)//n_part
                tot_sim_bt = 0
                # Calculate the total similarity of this number of blocks, for this bootstrapped trajectory
                for i in range(n_part):
                    start = eq_size + i*block_size
                    pos_bt_block = pos_bt[start:start+block_size:step]
                    covars_bt, tmp = calc_cov_mat_internal(pos_bt_block)
                    tot_sim_bt += pca_similarity(covars_bt, covar_bt_total)
                # Calculate the average similarity for this number of blocks, for this bootstrapped trajectory
                sim_bt[j] = tot_sim_bt/n_part
            sim_bt_all += sim_bt
    # Calculate the average similarity over all bootstrapped trajectories
    sim_bt_all /= n_bootstrap

    ### ---PART C: PROCESSING THE RESULTS --- ###

    pt.clf()
    pt.semilogx((time[-1]-time[0])/n_parts/picosecond, sim_block/sim_bt_all, 'r-')
    pt.semilogx((time[-1]-time[0])/n_parts/picosecond, sim_block/sim_bt_all, 'rs')
    pt.xlabel('Block size [ps]')
    pt.ylabel('PCA similarity (1=perfectly similar)')
    pt.title('Convergence assessment via PCA: ' + fn)
    pt.ylim([0,1])
    pt.savefig(fn+'.png')
    pt.savefig(fn+'.pdf', format='pdf')
    return sim_block/sim_bt_all
Esempio n. 60
0
    def __init__(self,
                 numbers,
                 pos,
                 scopes=None,
                 scope_ids=None,
                 ffatypes=None,
                 ffatype_ids=None,
                 bonds=None,
                 rvecs=None,
                 charges=None,
                 radii=None,
                 valence_charges=None,
                 dipoles=None,
                 radii2=None,
                 masses=None):
        r'''Initialize a System object.

           **Arguments:**

           numbers
                A numpy array with atomic numbers

           pos
                A numpy array (N,3) with atomic coordinates in Bohr.

           **Optional arguments:**

           scopes
                A list with scope names

           scope_ids
                A list of scope indexes that links each atom with an element of
                the scopes list. If this argument is not present, while scopes
                is given, it is assumed that scopes contains a scope name for
                every atom, i.e. that it is a list with length natom. In that
                case, it will be converted automatically to a scopes list
                with only unique name together with a corresponding scope_ids
                array.

           ffatypes
                A list of labels of the force field atom types.

           ffatype_ids
                A list of atom type indexes that links each atom with an element
                of the list ffatypes. If this argument is not present, while
                ffatypes is given, it is assumed that ffatypes contains an
                atom type for every element, i.e. that it is a list with length
                natom. In that case, it will be converted automatically to
                a short ffatypes list with only unique elements (within each
                scope) together with a corresponding ffatype_ids array.

           bonds
                a numpy array (B,2) with atom indexes (counting starts from
                zero) to define the chemical bonds.

           rvecs
                An array whose rows are the unit cell vectors. At most three
                rows are allowed, each containing three Cartesian coordinates.

           charges
                An array of atomic charges

           radii
                An array of atomic radii, :math:`R_{A,c}`, that determine shape of the atomic
                charge distribution:

                .. math::

                    \rho_{A,c}(\mathbf{r}) = \frac{q_A}{\pi^{3/2}R_{A,c}^3} \exp\left(
                    -\frac{|r - \mathbf{R}_A|^2}{R_{A,c}^2}
                    \right)

           valence_charges
                In case a point-core + distribute valence charge is used, this
                vector contains the valence charges. The core charges can be
                computed by subtracting the valence charges from the net
                charges.

           dipoles
                An array of atomic dipoles

           radii2
                An array of atomic radii, :math:`R_{A,d}`, that determine shape of the
                atomic dipole distribution:

                .. math::

                   \rho_{A,d}(\mathbf{r}) = -2\frac{\mathbf{d}_A \cdot (\mathbf{r} - \mathbf{R}_A)}{
                   \sqrt{\pi} R_{A,d}^5
                   }\exp\left(
                    -\frac{|r - \mathbf{R}_A|^2}{R_{A,d}^2}
                    \right)

           masses
                The atomic masses (in atomic units, i.e. m_e)


           Several attributes are derived from the (optional) arguments:

           * ``cell`` contains the rvecs attribute and is an instance of the
             ``Cell`` class.

           * ``neighs1``, ``neighs2`` and ``neighs3`` are dictionaries derived
             from ``bonds`` that contain atoms that are separated 1, 2 and 3
             bonds from a given atom, respectively. This means that i in
             system.neighs3[j] is ``True`` if there are three bonds between
             atoms i and j.
        '''
        if len(numbers.shape) != 1:
            raise ValueError(
                'Argument numbers must be a one-dimensional array.')
        if pos.shape != (len(numbers), 3):
            raise ValueError(
                'The pos array must have Nx3 rows. Mismatch with numbers argument with shape (N,).'
            )
        self.numbers = numbers
        self.pos = pos
        self.ffatypes = ffatypes
        self.ffatype_ids = ffatype_ids
        self.scopes = scopes
        self.scope_ids = scope_ids
        self.bonds = bonds
        self.cell = Cell(rvecs)
        self.charges = charges
        self.radii = radii
        self.valence_charges = valence_charges
        self.dipoles = dipoles
        self.radii2 = radii2
        self.masses = masses
        with log.section('SYS'):
            # report some stuff
            self._init_log()
            # compute some derived attributes
            self._init_derived()